Skip to main content

Mannosyl (Alpha-1,3-)- Glycoprotein Beta-1,2-N-Acetylglucosaminyltransferase (MGAT1)

  • Reference work entry
  • First Online:
Handbook of Glycosyltransferases and Related Genes

Abstract

Early structural studies on glycoproteins revealed bi-, tri-, and tetra-antennary N-glycans in which GlcNAc residues were linked to a conserved trimannosyl core, prompting the search for the GlcNAc-transferases that catalyzed the addition of each GlcNAc residue. Mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase I (MGAT1), originally termed N-acetylglucosaminyltransferase I, abbreviated GlcNAc-TI, was the first N-glycan branching GlcNAc-transferase for which an assay was developed (Gottlieb et al. 1975; Stanley et al. 1975). MGAT1 catalyzes the transfer of GlcNAc from UDP-GlcNAc to the terminal α1,3-linked Man in Man5GlcNAc2Asn to initiate the synthesis of hybrid and complex N-linked glycans in multicellular organisms (reviewed in Kornfeld and Kornfeld 1985). It is not found in yeast or bacteria. The human gene MGAT1 resides on chromosome 5q35 (Kumar et al. 1992), covering 25.12 kb, from 180,242,651 to 180,217,536 (NCBI 37, August 2010) on the reverse strand (Thierry-Mieg and Thierry-Mieg 2006). The mouse gene, Mgat1, is on chromosome 11 (Pownall et al. 1992). Northern blot analyses revealed two transcripts of ˜2.9 and ˜3.3 kb present in most mammalian tissues, with the shorter transcript predominating in liver, and the longer transcript in brain (Yang et al. 1994; Yip et al. 1997). However, the human MGAT1 locus is complex with 30 introns, seven predicted alternative promoters, ten validated poly[A] addition sites >30 transcripts that encode 11 protein isoforms, with three containing the complete coding sequence (Thierry-Mieg and Thierry-Mieg 2006). The coding region is in a single exon and the Mgat1 gene is ubiquitously expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akama TO, Nakagawa H, Wong NK, Sutton-Smith M, Dell A et al (2006) Essential and mutually compensatory roles of (alpha)-mannosidase II and (alpha)-mannosidase IIx in N-glycan processing in vivo in mice. Proc Natl Acad Sci USA 103:8983–8988

    Article  CAS  PubMed  Google Scholar 

  • Batista F, Lu L, Williams SA, Stanley P (2012) Complex N-Glycans are essential, but core 1 and 2 mucin O-Glycans, O-fucose lycans, and NOTCH1 are dispensable, for mammalian spermatogenesis. Biol Reprod 86(179):1–12

    Google Scholar 

  • Beheshti Zavareh R, Sukhai MA, Hurren R, Gronda M, Wang X, Simpson CD, Maclean N, Zih F, Ketela T, Swallow CJ, Moffat J, Rose DR, Schachter H, Schimmer AD, Dennis JW (2012) Suppression of cancer progression by MGAT1 shRNA knockdown. PLoS One 7:e43721

    Article  PubMed Central  PubMed  Google Scholar 

  • Boscher C, Dennis JW, Nabi IR (2011) Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol 23:383–392

    Article  CAS  PubMed  Google Scholar 

  • Campbell RM, Metzler M, Granovsky M, Dennis JW, Marth JD (1995) Complex asparagine-linked oligosaccharides in Mgat1-null embryos. Glycobiology 5:535–543

    Article  CAS  PubMed  Google Scholar 

  • Chaney W, Stanley P (1986) Lec1A Chinese hamster ovary cell mutants appear to arise from a structural alteration in N-acetylglucosaminyltransferase I. J Biol Chem 261:10551–10557

    CAS  PubMed  Google Scholar 

  • Chen W, Stanley P (2003) Five Lec1 CHO cell mutants have distinct Mgat1 gene mutations that encode truncated N-acetylglucosaminyltransferase I. Glycobiology 13:43–50

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhou S, Sarkar M, Spence AM, Schachter H (1999) Expression of three Caenorhabditis elegans N-acetylglucosaminyltransferase I genes during development. J Biol Chem 274:288–297

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Unligil UM, Rini JM, Stanley P (2001) Independent Lec1A CHO glycosylation mutants arise from point mutations in N-Acetylglucosaminyltransferase I that reduce affinity for both substrates. Molecular consequences based on the crystal structure of GlcNAc-TI. Biochemistry 40:8765–8772

    Article  CAS  PubMed  Google Scholar 

  • Gordon RD, Sivarajah P, Satkunarajah M, Ma D, Tarling CA et al (2006) X-ray crystal structures of rabbit N-acetylglucosaminyltransferase I (GnT I) in complex with donor substrate analogues. J Mol Biol 360:67–79

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb C, Baenziger J, Kornfeld S (1975) Deficient uridine diphosphate-N-acetylglucosamine:glycoprotein N-acetylglucosaminyltransferase activity in a clone of Chinese hamster ovary cells with altered surface glycoproteins. J Biol Chem 250:3303–3309

    CAS  PubMed  Google Scholar 

  • Grigorian A, Mkhikian H, Demetriou M (2012) Interleukin-2, Interleukin-7, T cell-mediated autoimmunity, and N-glycosylation. Ann NY Acad Sci 1253:49–57

    Article  CAS  PubMed  Google Scholar 

  • Hassinen A, Pujol FM, Kokkonen N, Pieters C, Kihlstrom M, Korhonen K, Kellokumpu S (2011) Functional organization of Golgi N- and O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells. J Biol Chem 286:38329–38340

    Article  CAS  PubMed  Google Scholar 

  • Hoe MH, Slusarewicz P, Misteli T, Watson R, Warren G (1995) Evidence for recycling of the resident medial/trans Golgi enzyme, N-acetylglucosaminyltransferase I, in ldlD cells. J Biol Chem 270:25057–25063

    Article  CAS  PubMed  Google Scholar 

  • Ioffe E, Stanley P (1994) Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci USA 91:728–732

    Article  CAS  PubMed  Google Scholar 

  • Ioffe E, Liu Y, Stanley P (1996) Essential role for complex N-glycans in forming an organized layer of bronchial epithelium. Proc Natl Acad Sci USA 93:11041–11046

    Article  CAS  PubMed  Google Scholar 

  • Ioffe E, Liu Y, Stanley P (1997) Complex N-glycans in MGAT1 null preimplantation embryos arise from maternal MGAT1 RNA. Glycobiology 7:913–919

    Article  CAS  PubMed  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Yang J, Larsen RD, Stanley P (1990) Cloning and expression of N-acetylglucosaminyltransferase I, the medial Golgi transferase that initiates complex N-linked carbohydrate formation. Proc Natl Acad Sci USA 87:9948–9952

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Yang J, Eddy RL, Byers MG, Shows TB, Stanley P (1992) Cloning and expression of the murine gene and chromosomal location of the human gene encoding N-acetylglucosaminyltransferase I. Glycobiology 2:383–393, erratum Glycobiology (1999) 9:(8):ix

    Article  CAS  PubMed  Google Scholar 

  • Meager A, Ungkitchanukit A, Nairn R, Hughes RC (1975) Ricin resistance in baby hamster kidney cells. Nature 257:137–139

    Article  CAS  PubMed  Google Scholar 

  • Metzler M, Gertz A, Sarkar M, Schachter H, Schrader JW, Marth JD (1994) Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development. EMBO J J13:2056–2065

    Google Scholar 

  • Mkhikian H, Grigorian A, Li CF, Chen HL, Newton B et al (2011) Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat Commun 2(334):1–13

    Google Scholar 

  • Narasimhan S, Stanley P, Schachter H (1977) Control of glycoprotein synthesis. LectiN-resistant mutant containing only one of two distinct N-acetylglucosaminyltransferase activities present in wild type Chinese hamster ovary cells. J Biol Chem 252:3926–3933

    CAS  PubMed  Google Scholar 

  • Nishikawa Y, Pegg W, Paulsen H, Schachter H (1988) Control of glycoprotein synthesis. Purification and characterization of rabbit liver UDP-N-acetylglucosamine:α-3-d-mannoside β-1,2-N-acetylglucosaminyltransferase I. J Biol Chem 263:8270–8281

    CAS  PubMed  Google Scholar 

  • Opat AS, Puthalakath H, Burke J, Gleeson PA (1998) Genetic defect in N-acetylglucosaminyltransferase I gene of a ricin-resistant baby hamster kidney mutant. Biochem J 336:593–598

    CAS  PubMed  Google Scholar 

  • Oppenheimer CL, Hill RL (1981) Purification and characterization of a rabbit liver α,1,3 mannoside β1,2 N-acetylglucosaminyltransferase. J Biol Chem 256:799–804

    CAS  PubMed  Google Scholar 

  • Pownall S, Kozak CA, Schappert K, Sarkar M, Hull E, Schachter H, Marth JD (1992) Molecular cloning and characterization of the mouse UDP-N-acetylglucosamine:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I gene. Genomics 12:699–704

    Article  CAS  PubMed  Google Scholar 

  • Puthalakath H, Burke J, Gleeson PA (1996) Glycosylation defect in Lec1 Chinese hamster ovary mutant is due to a point mutation in N-acetylglucosaminyltransferase I gene. J Biol Chem 271:27818–27822

    Article  CAS  PubMed  Google Scholar 

  • Robertson MA, Etchison JR, Robertson JS, Summers DF, Stanley P (1978) Specific changes in the oligosaccharide moieties of VSV grown in different lectiN-resistant CHO cells. Cell 13:515–526

    Article  CAS  PubMed  Google Scholar 

  • Sarkar M, Hull E, Nishikawa Y, Simpson RJ, Moritz RL, Dunn R, Schachter H (1991) Molecular cloning and expression of cDNA encoding the enzyme that controls conversion of high-mannose to hybrid and complex N-glycans: UDP-N-acetylglucosamine: α-3-d-mannoside β-1,2-N-acetylglucosaminyltransferase I. Proc Natl Acad Sci USA 88:234–238

    Article  CAS  PubMed  Google Scholar 

  • Sarkar M, Pagny S, Unligil U, Joziasse D, Mucha J, Glossl J, Schachter H (1998) Removal of 106 amino acids from the N-terminus of UDP-GlcNAc: α-3-d- mannoside β-1,2-N-acetylglucosaminyltransferase I does not inactivate the enzyme. Glycoconj J 15:193–197

    Article  CAS  PubMed  Google Scholar 

  • Sarkar M, Iliadi KG, Leventis PA, Schachter H, Boulianne GL (2010) Neuronal expression of Mgat1 rescues the shortened life span of Drosophila Mgat11 null mutants and increases life span. Proc Natl Acad Sci USA 107:9677–9682

    Article  CAS  PubMed  Google Scholar 

  • Schachter H (2010) Mgat1-dependent N-glycans are essential for the normal development of both vertebrate and invertebrate metazoans. Sem Cell Dev Biol 21:609–615

    Article  CAS  Google Scholar 

  • Schachter H, Boulianne G (2011) Life is sweet! A novel role for N-glycans in Drosophila lifespan. Fly 5:18–24

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Williams SA, Seppo A, Kurniawan H, Chen W, Ye Z, Marth JD, Stanley P (2004) Inactivation of the Mgat1 gene in oocytes impairs oogenesis, but embryos lacking complex and hybrid N-glycans develop and implant. Mol Cell Biol 24:9920–9929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song Y, Aglipay JA, Bernstein JD, Goswami S, Stanley P (2010) The bisecting GlcNAc on N-glycans inhibits growth factor signaling and retards mammary tumor progression. Cancer Res 70:3361–3371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stanley P (1983) Selection of lectin-resistant mutants of animal cells. Methods Enzymol 96:157–184

    Article  CAS  PubMed  Google Scholar 

  • Stanley P (1984) Glycosylation mutants of animal cells. Annu Rev Genet 18:525–552

    Article  CAS  PubMed  Google Scholar 

  • Stanley P (1989) Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol 9:377–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanley P, Narasimhan S, Siminovitch L, Schachter H (1975) Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-. acetylglucosamine-glycoprotein N-acetylglucosaminyltransferase activity. Proc Natl Acad Sci USA 72:3323–3327

    Article  CAS  PubMed  Google Scholar 

  • Tabas I, Schlesinger S, Kornfeld S (1978) Processing of high mannose oligosaccharides to form complex type oligosaccharides on the newly synthesized polypeptides of the vesicular stomatitis virus G protein and the IgG heavy chain. J Biol Chem 253:716–722

    CAS  PubMed  Google Scholar 

  • Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 7(Suppl 1):S12.1–14

    Article  Google Scholar 

  • Unligil UM, Zhou S, Yuwaraj S, Sarkar M, Schachter H, Rini JM (2000) X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I, a key enzyme in the biosynthesis of N-linked glycans. EMBO J 19:5269–5280

    Article  CAS  PubMed  Google Scholar 

  • von Schaewen A, Sturm A, O’Neill J, Chrispeels MJ (1993) Isolation of a mutant Arabidopsis plant that lacks N-acetylglucosaminyltransferase I and is unable to synthesize Golgi-modified complex N-linked glycans. Plant Physiol 102:1109–1118

    Article  Google Scholar 

  • Williams SA, Stanley P (2009) Oocyte-specific deletion of complex and hybrid N-glycans leads to defects in preovulatory follicle and cumulus mass development. Reproduction 137:321–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Bhaumik M, Liu Y, Stanley P (1994) Regulation of N-linked glycosylation. Neuronal cell-specific expression of a 5′ extended transcript from the gene encoding N-acetylglucosaminyltransferase I. Glycobiology 4:703–712

    Article  CAS  PubMed  Google Scholar 

  • Ye Z, Marth JD (2004) N-glycan branching requirement in neuronal and post-natal viability. Glycobiology 14:547–558

    Article  CAS  PubMed  Google Scholar 

  • Yip B, Chen SH, Mulder H, Hoppener JW, Schachter H (1997) Organization of the human b-1,2-N-acetylglucosaminyltransferase I gene (MGAT1), which controls complex and hybrid N-glycan synthesis. Biochem J 321:465–474

    CAS  PubMed  Google Scholar 

  • Zhong X, Cooley C, Seth N, Juo ZS, Presman E, Resendes N, Kumar R, Allen M, Mosyak L, Stahl M, Somers W, Kriz R (2012) Engineering novel Lec1 glycosylation mutants in CHO-DUKX cells: molecular insights and effector modulation of N-acetylglucosaminyltransferase I. Biotech Bioeng 109:1723–1734

    Article  CAS  Google Scholar 

  • Zhu S, Hanneman A, Reinhold VN, Spence AM, Schachter H (2004) Caenorhabditis elegans triple null mutant lacking UDP-N-acetyl-d-glucosamine:alpha-3-d-mannoside beta1,2-N-acetylglucosaminyltransferase I. Biochem J 382:995–1001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Stanley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Stanley, P. (2014). Mannosyl (Alpha-1,3-)- Glycoprotein Beta-1,2-N-Acetylglucosaminyltransferase (MGAT1). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y., Angata, T. (eds) Handbook of Glycosyltransferases and Related Genes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54240-7_129

Download citation

Publish with us

Policies and ethics