Skip to main content

Pathophysiologie der Tumorkachexie

  • Chapter
Kachexie bei Tumorerkrankungen
  • 1080 Accesses

Zusammenfassung

Die Tumorkachexie stellt ein multifaktoriell bedingtes Syndrom dar, welches mit einem Abbau von Muskel- und Fettmasse einhergeht und bei etwa 50–80 % der Krebspatienten, abhängig von der Art der Tumorerkrankung, auftritt. Es wird angenommen, dass etwa 20 % der Tumorpatienten indirekt an den Folgen der Kachexie versterben. Vor diesem Hintergrund wird verständlich, wie wichtig Kenntnisse zur Pathophysiologie der Tumorkachexie im Hinblick auf die Behandlung von Tumorpatienten sind. Im Folgenden werden die Mechanismen besprochen, die zu einer tumorbedingten Kachexie beitragen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Agustsson T, Ryden M, Hoffstedt J, et al. Mechanism of increased lipolysis in cancer cachexia. Cancer Res 2007;67:5531–5537.

    Google Scholar 

  2. Akamizu T, Kangawa K. Ghrelin for cachexia. J Cachexia Sarcopenia Muscle 2010;1:169–176.

    Google Scholar 

  3. Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 2014;14:754–762.

    Google Scholar 

  4. Asp ML, Tian M, Wendel AA, Belury MA. Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. Int J Cancer 2010;126:756–763.

    Google Scholar 

  5. Blauwhoff-Buskermolen S, Versteeg KS, de van der Schueren MA, et al. Loss of Muscle Mass During Chemotherapy Is Predictive for Poor Survival of Patients With Metastatic Colorectal Cancer. J Clin Oncol 2016;34:1339–1344.

    Google Scholar 

  6. Blum D, Omlin A, Baracos VE, et al. Cancer cachexia: a systematic literature review of items and domains associated with involuntary weight loss in cancer. Crit Rev Oncol Hematol 2011;80:114–144.

    Google Scholar 

  7. Bonetto A, Aydogdu T, Jin X, et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab 2012;303:E410–421.

    Google Scholar 

  8. Constantinou C, Fontes de Oliveira CC, Mintzopoulos D, et al. Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia. Int J Mol Med 2011;27:15–24.

    Google Scholar 

  9. Ezeoke CC, Morley JE. Pathophysiology of anorexia in the cancer cachexia syndrome. J Cachexia Sarcopenia Muscle 2015;6:287–302.

    Google Scholar 

  10. Fukawa T, Yan-Jiang BC, Min-Wen JC, et al. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. Nat Med 2016;22:666–671.

    Google Scholar 

  11. Kalra PR, Tigas S. Regulation of lipolysis: natriuretic peptides and the development of cachexia. Int J Cardiol 2002;85:125–132.

    Google Scholar 

  12. Kir S, Spiegelman BM. Cachexia and Brown Fat: A Burning Issue in Cancer. Trends in Cancer 2016;2:461–463.

    Google Scholar 

  13. Kir S, White JP, Kleiner S, et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 2014;513:100–104.

    Google Scholar 

  14. Le Bricon T, Gugins S, Cynober L, Baracos VE. Negative impact of cancer chemotherapy on protein metabolism in healthy and tumor-bearing rats. Metabolism 1995;44:1340–1348.

    Google Scholar 

  15. Petruzzelli M, Schweiger M, Schreiber R, et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 2014;20:433–447.

    Google Scholar 

  16. Prado CM, Cushen SJ, Orsso CE, Ryan AM. Sarcopenia and cachexia in the era of obesity: clinical and nutritional impact. Proc Nutr Soc 2016;75:188–198.

    Google Scholar 

  17. Proctor MJ, Morrison DS, Talwar D, et al. An inflammation-based prognostic score (mGPS) predicts cancer survival independent of tumour site: a Glasgow Inflammation Outcome Study. Br J Cancer 2011;104:726–734.

    Google Scholar 

  18. Rohm M, Schafer M, Laurent V, et al. An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nat Med 2016;22:1120–1130.

    Google Scholar 

  19. Russell ST, Zimmerman TP, Domin BA, Tisdale MJ. Induction of lipolysis in vitro and loss of body fat in vivo by zinc-alpha2-glycoprotein. Biochim Biophys Acta 2004;1636:59–68.

    Google Scholar 

  20. Sanders PM, Tisdale MJ. Effect of zinc-alpha2-glycoprotein (ZAG) on expression of uncoupling proteins in skeletal muscle and adipose tissue. Cancer Lett 2004;212:71–81.

    Google Scholar 

  21. Sassoon DA. Fatty acid metabolism-the first trigger for cachexia? Nat Med 2016;22:584–585.

    Google Scholar 

  22. Sengenes C, Bouloumie A, Hauner H, et al. Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J Biol Chem 2003;278:48617–48626.

    Google Scholar 

  23. Shellock FG, Riedinger MS, Fishbein MC. Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol 1986;111:82–85.

    Google Scholar 

  24. Tan BH, Fearon KC. Cytokine gene polymorphisms and susceptibility to cachexia. Curr Opin Support Palliat Care 2010;4:243–248.

    Google Scholar 

  25. Tsoli M, Moore M, Burg D, et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer research 2012;72:4372–4382.

    Google Scholar 

  26. Tsoli M, Robertson G. Cancer cachexia: malignant inflammation, tumorkines, and metabolic mayhem. Trends in endocrinology and metabolism: TEM 2013; 24:174–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Medizin Verlag GmbH, München

About this chapter

Cite this chapter

Hacker, U. (2017). Pathophysiologie der Tumorkachexie. In: Kachexie bei Tumorerkrankungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-89935-305-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-89935-305-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-89935-304-4

  • Online ISBN: 978-3-89935-305-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics