Skip to main content

The Proteomics Toolbox Applied to Peroxisomes

  • Chapter
  • First Online:
Molecular Machines Involved in Peroxisome Biogenesis and Maintenance

Abstract

The full understanding of a cell’s functionality and activity requires comprehensive knowledge about the properties and the individual contribution of all players involved, both as single entities and as parts of functional units such as membrane-enclosed organelles or larger multi-protein complexes. This comprises, among others, the gathering of information about the accurate subcellular localization of proteins and the interaction networks they form as well as dynamic alterations thereof upon metabolic, developmental, or environmental changes. The proteomics toolbox provides us here with a powerful means for the systematic, discovery-driven analysis of protein properties on a proteome-wide scale. In clever combination with classical biochemical or cell biological methods, state-of-the-art mass spectrometry (MS)-based proteomics has boosted the functional and quantitative analysis of proteins beyond the sheer generation of identification lists.

In this chapter, we will highlight the potential of modern MS-based proteomics research for the in-depth analysis of different aspects of peroxisome biology. The focus will be on quantitative MS strategies based on label-free (e.g., protein correlation profiling) or stable isotope-labeling techniques. We will review the applicability of these powerful approaches to the virtually complete delineation of the peroxisomal proteome including the discovery of new peroxisomal constituents as well as the characterization of peroxisomal membrane protein complexes providing new insights into distinct aspects of biogenesis and functioning of peroxisomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Affinity purification

AP-AM:

Affinity purification after mixing

AP-MS:

Affinity purification-mass spectrometry

AP-PM:

Affinity purification prior to mixing

ER:

Endoplasmic reticulum

ESI:

Electrospray ionization

GFP:

Green fluorescence protein

GPF:

Gas phase fractionation

ICAT:

Isotope-coded affinity tag

iTRAQ:

Isobaric tags for absolute and relative quantification

LC:

Liquid chromatography

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

PA:

Protein A

POI:

Protein of interest

PPI:

Protein–protein interactions

PTM:

Posttranslational modification

PTS:

Peroxisomal targeting signal

QTOF:

Quadrupole time of flight

SILAC:

Stable isotope labeling with amino acids in cell culture

TAP:

Tandem affinity purification

References

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal K, Choe LH, Lee KH (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 5(2):112–120

    Article  CAS  PubMed  Google Scholar 

  • Agne B, Meindl NM, Niederhoff K, Einwachter H, Rehling P, Sickmann A, Meyer HE, Girzalsky W, Kunau WH (2003) Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell 11(3):635–646

    Article  CAS  PubMed  Google Scholar 

  • Alberts B (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92(3):291–294

    Article  CAS  PubMed  Google Scholar 

  • Andersen JS, Mann M (2006) Organellar proteomics: turning inventories into insights. EMBO Rep 7(9):874–879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426(6966):570–574

    Article  CAS  PubMed  Google Scholar 

  • Babu M, Vlasblom J, Pu S, Guo X, Graham C, Bean BD, Burston HE, Vizeacoumar FJ, Snider J, Phanse S, Fong V, Tam YY, Davey M, Hnatshak O, Bajaj N, Chandran S, Punna T, Christopolous C, Wong V, Yu A, Zhong G, Li J, Stagljar I, Conibear E, Wodak SJ, Emili A, Greenblatt JF (2012) Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489(7417):585–589

    Article  CAS  PubMed  Google Scholar 

  • Bantscheff M, Lemeer S, Savitski MM, Kuster B (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404(4):939–965

    Article  CAS  PubMed  Google Scholar 

  • Baumgart E, Fahimi HD, Stich A, Volkl A (1996) L-lactate dehydrogenase A4- and A3B isoforms are bona fide peroxisomal enzymes in rat liver. Evidence for involvement in intraperoxisomal NADH reoxidation. J Biol Chem 271(7):3846–3855

    Article  CAS  PubMed  Google Scholar 

  • Beynon RJ, Pratt JM (2005) Metabolic labeling of proteins for proteomics. Mol Cell Proteomics 4(7):857–872

    Article  CAS  PubMed  Google Scholar 

  • Bharti P, Schliebs W, Schievelbusch T, Neuhaus A, David C, Kock K, Herrmann C, Meyer HE, Wiese S, Warscheid B, Theiss C, Erdmann R (2011) PEX14 is required for microtubule-based peroxisome motility in human cells. J Cell Sci 124(Pt 10):1759–1768

    Article  CAS  PubMed  Google Scholar 

  • Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M (2003) A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol 21(3):315–318

    Article  CAS  PubMed  Google Scholar 

  • Braun RJ, Kinkl N, Beer M, Ueffing M (2007) Two-dimensional electrophoresis of membrane proteins. Anal Bioanal Chem 389(4):1033–1045

    Article  CAS  PubMed  Google Scholar 

  • Bussell JD, Behrens C, Ecke W, Eubel H (2013) Arabidopsis peroxisome proteomics. Front Plant Sci 4:101

    Article  PubMed Central  PubMed  Google Scholar 

  • Chang J, Tower RJ, Lancaster DL, Rachubinski RA (2013) Dynein light chain interaction with the peroxisomal import docking complex modulates peroxisome biogenesis in yeast. J Cell Sci 126(Pt 20):4698–4706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christoforou AL, Lilley KS (2012) Isobaric tagging approaches in quantitative proteomics: the ups and downs. Anal Bioanal Chem 404(4):1029–1037

    Article  CAS  PubMed  Google Scholar 

  • Cosson P, Letourneur F (1994) Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263(5153):1629–1631

    Article  CAS  PubMed  Google Scholar 

  • David C, Koch J, Oeljeklaus S, Laernsack A, Melchior S, Wiese S, Schummer A, Erdmann R, Warscheid B, Brocard C (2013) A combined approach of quantitative interaction proteomics and live-cell imaging reveals a regulatory role for ER reticulon homology proteins in peroxisome biogenesis. Mol Cell Proteomics 12(9):2408–2425

    Article  CAS  PubMed  Google Scholar 

  • Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141(4):668–681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dodt G, Gould SJ (1996) Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor. J Cell Biol 135(6 Pt 2):1763–1774

    Article  CAS  PubMed  Google Scholar 

  • Drissi R, Dubois ML, Boisvert FM (2013) Proteomics methods for subcellular proteome analysis. FEBS J 280(22):5626–5634

    Article  CAS  PubMed  Google Scholar 

  • Erdmann R, Blobel G (1995) Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p. J Cell Biol 128(4):509–523

    Article  CAS  PubMed  Google Scholar 

  • Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG, Couto N, Pandhal J, Smith D, Pham TK, Karunakaran E, Zou X, Biggs CA, Wright PC (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404(4):1011–1027

    Article  CAS  PubMed  Google Scholar 

  • Fahimi HD, Reinicke A, Sujatta M, Yokota S, Ozel M, Hartig F, Stegmeier K (1982) The short- and long-term effects of bezafibrate in the rat. Ann N Y Acad Sci 386:111–135

    Article  CAS  PubMed  Google Scholar 

  • Foster LJ, de Hoog CL, Zhang Y, Xie X, Mootha VK, Mann M (2006) A mammalian organelle map by protein correlation profiling. Cell 125(1):187–199

    Article  CAS  PubMed  Google Scholar 

  • Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631–636

    Article  CAS  PubMed  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147

    Article  CAS  PubMed  Google Scholar 

  • Gronemeyer T, Wiese S, Grinhagens S, Schollenberger L, Satyagraha A, Huber LA, Meyer HE, Warscheid B, Just WW (2013a) Localization of Rab proteins to peroxisomes: a proteomics and immunofluorescence study. FEBS Lett 587(4):328–338

    Article  CAS  PubMed  Google Scholar 

  • Gronemeyer T, Wiese S, Ofman R, Bunse C, Pawlas M, Hayen H, Eisenacher M, Stephan C, Meyer HE, Waterham HR, Erdmann R, Wanders RJ, Warscheid B (2013b) The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey. PLoS One 8(2):e57395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grunau S, Schliebs W, Linnepe R, Neufeld C, Cizmowski C, Reinartz B, Meyer HE, Warscheid B, Girzalsky W, Erdmann R (2009) Peroxisomal targeting of PTS2 pre-import complexes in the yeast Saccharomyces cerevisiae. Traffic 10(4):451–460

    Article  CAS  PubMed  Google Scholar 

  • Gurvitz A, Rottensteiner H (2006) The biochemistry of oleate induction: transcriptional upregulation and peroxisome proliferation. Biochim Biophys Acta 1763(12):1392–1402

    Article  CAS  PubMed  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999a) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  PubMed  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999b) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han X, Aslanian A, Yates JR 3rd (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12(5):483–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartinger J, Stenius K, Hogemann D, Jahn R (1996) 16-BAC/SDS-PAGE: a two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal Biochem 240(1):126–133

    Article  CAS  PubMed  Google Scholar 

  • Hasan S, Platta HW, Erdmann R (2013) Import of proteins into the peroxisomal matrix. Front Physiol 4:261

    Article  PubMed Central  PubMed  Google Scholar 

  • Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ (2014) The one hour yeast proteome. Mol Cell Proteomics 13(1):339–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180–183

    Article  CAS  PubMed  Google Scholar 

  • Islinger M, Cardoso MJ, Schrader M (2010) Be different–the diversity of peroxisomes in the animal kingdom. Biochim Biophys Acta 1803(8):881–897

    Article  CAS  PubMed  Google Scholar 

  • Islinger M, Luers GH, Li KW, Loos M, Volkl A (2007) Rat liver peroxisomes after fibrate treatment. A survey using quantitative mass spectrometry. J Biol Chem 282(32):23055–23069

    Article  CAS  PubMed  Google Scholar 

  • Islinger M, Luers GH, Zischka H, Ueffing M, Volkl A (2006) Insights into the membrane proteome of rat liver peroxisomes: microsomal glutathione-S-transferase is shared by both subcellular compartments. Proteomics 6(3):804–816

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Marelli M, Rachubinski RA, Goodlett DR, Aitchison JD (2010) Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress. J Biol Chem 285(9):6739–6749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaake RM, Wang X, Huang L (2010) Profiling of protein interaction networks of protein complexes using affinity purification and quantitative mass spectrometry. Mol Cell Proteomics 9(8):1650–1665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kerssen D, Hambruch E, Klaas W, Platta HW, de Kruijff B, Erdmann R, Kunau WH, Schliebs W, Kerssen A, de Valk HW, Visser GH (2006) Membrane association of the cycling peroxisome import receptor Pex5p. J Biol Chem 281(37):27003–27015

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi M, Hatano N, Yokota S, Shimozawa N, Imanaka T, Taniguchi H (2004) Proteomic analysis of rat liver peroxisome: presence of peroxisome-specific isozyme of Lon protease. J Biol Chem 279(1):421–428

    Article  CAS  PubMed  Google Scholar 

  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637–643

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76(14):4193–4201

    Article  CAS  PubMed  Google Scholar 

  • Mallick P, Kuster B (2010) Proteomics: a pragmatic perspective. Nat Biotechnol 28(7):695–709

    Article  CAS  PubMed  Google Scholar 

  • Managadze D, Wurtz C, Wiese S, Schneider M, Girzalsky W, Meyer HE, Erdmann R, Warscheid B, Rottensteiner H (2010) Identification of PEX33, a novel component of the peroxisomal docking complex in the filamentous fungus Neurospora crassa. Eur J Cell Biol 89(12):955–964

    Article  CAS  PubMed  Google Scholar 

  • Mann M, Kelleher NL (2008) Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci U S A 105(47):18132–18138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marelli M, Smith JJ, Jung S, Yi E, Nesvizhskii AI, Christmas RH, Saleem RA, Tam YY, Fagarasanu A, Goodlett DR, Aebersold R, Rachubinski RA, Aitchison JD (2004) Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. J Cell Biol 167(6):1099–1112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McClelland GB, Khanna S, Gonzalez GF, Butz CE, Brooks GA (2003) Peroxisomal membrane monocarboxylate transporters: evidence for a redox shuttle system? Biochem Biophys Res Commun 304(1):130–135

    Article  CAS  PubMed  Google Scholar 

  • Mi J, Kirchner E, Cristobal S (2007) Quantitative proteomic comparison of mouse peroxisomes from liver and kidney. Proteomics 7(11):1916–1928

    Article  CAS  PubMed  Google Scholar 

  • Mousson F, Kolkman A, Pijnappel WW, Timmers HT, Heck AJ (2008) Quantitative proteomics reveals regulation of dynamic components within TATA-binding protein (TBP) transcription complexes. Mol Cell Proteomics 7(5):845–852

    Article  CAS  PubMed  Google Scholar 

  • Nuttall JM, Motley A, Hettema EH (2011) Peroxisome biogenesis: recent advances. Curr Opin Cell Biol 23(4):421–426

    Article  CAS  PubMed  Google Scholar 

  • Oeljeklaus S, Meyer HE, Warscheid B (2009) New dimensions in the study of protein complexes using quantitative mass spectrometry. FEBS Lett 583(11):1674–1683

    Article  CAS  PubMed  Google Scholar 

  • Oeljeklaus S, Reinartz BS, Wolf J, Wiese S, Tonillo J, Podwojski K, Kuhlmann K, Stephan C, Meyer HE, Schliebs W, Brocard C, Erdmann R, Warscheid B (2012) Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis. J Proteome Res 11(4):2567–2580

    Article  CAS  PubMed  Google Scholar 

  • Ofman R, Speijer D, Leen R, Wanders RJ (2006) Proteomic analysis of mouse kidney peroxisomes: identification of RP2p as a peroxisomal nudix hydrolase with acyl-CoA diphosphatase activity. Biochem J 393(Pt 2):537–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Kratchmarova I, Mann M (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1(5):252–262

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Gygi SP (2001) Proteomics: the move to mixtures. J Mass Spectrom 36(10):1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Platta HW, Erdmann R (2007) Peroxisomal dynamics. Trends Cell Biol 17(10):474–484

    Article  CAS  PubMed  Google Scholar 

  • Platta HW, Hagen S, Erdmann R (2013) The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci 70(8):1393–1411

    Article  CAS  PubMed  Google Scholar 

  • Reguenga C, Oliveira ME, Gouveia AM, Eckerskorn C, Sa-Miranda C, Azevedo JE (1999) Identification of a 24 kDa intrinsic membrane protein from mammalian peroxisomes. Biochim Biophys Acta 1445(3):337–341

    Article  CAS  PubMed  Google Scholar 

  • Rizzo WB, Carney G (2005) Sjogren-Larsson syndrome: diversity of mutations and polymorphisms in the fatty aldehyde dehydrogenase gene (ALDH3A2). Hum Mutat 26(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Article  CAS  PubMed  Google Scholar 

  • Schäfer H, Nau K, Sickmann A, Erdmann R, Meyer HE (2001) Identification of peroxisomal membrane proteins of Saccharomyces cerevisiae by mass spectrometry. Electrophoresis 22(14):2955–2968

    Article  PubMed  Google Scholar 

  • Schluter A, Fourcade S, Domenech-Estevez E, Gabaldon T, Huerta-Cepas J, Berthommier G, Ripp R, Wanders RJ, Poch O, Pujol A (2007) PeroxisomeDB: a database for the peroxisomal proteome, functional genomics and disease. Nucleic Acids Res 35(Database issue):D815–822

    Article  PubMed Central  PubMed  Google Scholar 

  • Schollenberger L, Gronemeyer T, Huber CM, Lay D, Wiese S, Meyer HE, Warscheid B, Saffrich R, Peranen J, Gorgas K, Just WW (2010) RhoA regulates peroxisome association to microtubules and the actin cytoskeleton. PLoS One 5(11):e13886

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342

    Article  PubMed  Google Scholar 

  • Thoms S, Erdmann R (2005) Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation. FEBS J 272(20):5169–5181

    Article  CAS  PubMed  Google Scholar 

  • Treumann A, Thiede B (2010) Isobaric protein and peptide quantification: perspectives and issues. Expert Rev Proteomics 7(5):647–653

    Article  CAS  PubMed  Google Scholar 

  • Veenhuis M, Mateblowski M, Kunau WH, Harder W (1987) Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3(2):77–84

    Article  CAS  PubMed  Google Scholar 

  • Walther TC, Mann M (2010) Mass spectrometry-based proteomics in cell biology. J Cell Biol 190(4):491–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Huang L (2008) Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol Cell Proteomics 7(1):46–57

    Article  PubMed  Google Scholar 

  • Whitelegge JP (2013) Integral membrane proteins and bilayer proteomics. Anal Chem 85(5):2558–2568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiederhold E, Veenhoff LM, Poolman B, Slotboom DJ (2010) Proteomics of Saccharomyces cerevisiae organelles. Mol Cell Proteomics 9(3):431–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiese S, Gronemeyer T, Brites P, Ofman R, Bunse C, Renz C, Meyer HE, Wanders RJA, Warscheid B (2012) Comparative profiling of the peroxisomal proteome of wildtype and Pex7 knockout mice by quantitative mass spectrometry. Int J Mass Spectrometry 312:30–40

    Article  CAS  Google Scholar 

  • Wiese S, Gronemeyer T, Ofman R, Kunze M, Grou CP, Almeida JA, Eisenacher M, Stephan C, Hayen H, Schollenberger L, Korosec T, Waterham HR, Schliebs W, Erdmann R, Berger J, Meyer HE, Just W, Azevedo JE, Wanders RJ, Warscheid B (2007) Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol Cell Proteomics 6(12):2045–2057

    Article  CAS  PubMed  Google Scholar 

  • Yates JR 3rd (2011) A century of mass spectrometry: from atoms to proteomes. Nat Methods 8:633–637

    Article  CAS  Google Scholar 

  • Yates JR 3rd, Gilchrist A, Howell KE, Bergeron JJ (2005) Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol 6(9):702–714

    Article  CAS  PubMed  Google Scholar 

  • Yi EC, Marelli M, Lee H, Purvine SO, Aebersold R, Aitchison JD, Goodlett DR (2002) Approaching complete peroxisome characterization by gas-phase fractionation. Electrophoresis 23(18):3205–3216

    Article  CAS  PubMed  Google Scholar 

  • Zahedi RP, Moebius J, Sickmann A (2007) Two-dimensional BAC/SDS-PAGE for membrane proteomics. Subcell Biochem 43:13–20

    Article  PubMed  Google Scholar 

  • Zhang J, Kim J, Alexander A, Cai S, Tripathi DN, Dere R, Tee AR, Tait-Mulder J, Di Nardo A, Han JM, Kwiatkowski E, Dunlop EA, Dodd KM, Folkerth RD, Faust PL, Kastan MB, Sahin M, Walker CL (2013) A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol 15(10):1186–1196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to apologize to all the scientists whose work was not cited. This work was supported by grants of the Deutsche Forschungsgemeinschaft (FOR1905) and the Excellence Initiative of the German Federal & State Governments (Grant EXC 294 BIOSS Centre for Biological Signalling Studies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Warscheid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Oeljeklaus, S., Schummer, A., Warscheid, B. (2014). The Proteomics Toolbox Applied to Peroxisomes. In: Brocard, C., Hartig, A. (eds) Molecular Machines Involved in Peroxisome Biogenesis and Maintenance. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1788-0_12

Download citation

Publish with us

Policies and ethics