Skip to main content
Log in

Isobaric tagging approaches in quantitative proteomics: the ups and downs

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Isobaric tagging has proven to be a popular quantitative proteomics tool and has been rapidly adopted to study a wide range of biological questions in the few years since its commercialization. While the flexibility and multiplexing capacity afforded by this technology are clear attractions, it is not without its shortcomings. As the speed and sensitivity of mass spectrometers have improved and the application of isobaric tags to all manner of biological systems has increased, significant issues with quantitative accuracy and precision have come to light. Here we review the issues associated with the use of isobaric tagging methods and discuss the possible solutions which have been proposed to improve their precision and accuracy to approach the levels required within quantitative proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krijgsveld J, Ketting RF, Mahmoudi T, Johansen J, Artal-Sanz M, Verrijzer CP, Plasterk RHA, Heck AJR (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotech 21:927–931

    Article  CAS  Google Scholar 

  2. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  Google Scholar 

  3. Boisvert F-M, Ahmad Y, Gierlinski M, Charriere F, Lamont D, Scott M, Barton G, Lamond AI (2011) A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics. doi:10.1074/mcp.M111.011429

  4. Wu CC, MacCoss MJ, Howell KE, Matthews DE, Yates JR (2004) Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal Chem 76:4951–4959

    Article  CAS  Google Scholar 

  5. Kruger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, Fӓssler R, Mann M (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364

    Article  Google Scholar 

  6. Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Meth 7:383–385

    Article  CAS  Google Scholar 

  7. Hsu J-L, Huang S-Y, Chen S-H (2006) Dimethyl multiplexed labeling combined with microcolumn separation and MS analysis for time course study in proteomics. Electrophoresis 27:3652–3660

    Article  CAS  Google Scholar 

  8. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJR (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protocols 4:484–494

    Article  CAS  Google Scholar 

  9. Yao X, Afonso C, Fenselau C (2002) Dissection of proteolytic 18O labeling: endoprotease-catalyzed 16O-to-18O exchange of truncated peptide substrates. J Proteome Res 2:147–152

    Article  Google Scholar 

  10. Zhang R, Sioma CS, Thompson RA, Xiong L, Regnier FE (2002) Controlling deuterium isotope effects in comparative proteomics. Anal Chem 74:3662–3669

    Article  CAS  Google Scholar 

  11. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  Google Scholar 

  12. Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15

    Article  CAS  Google Scholar 

  13. Thompson A, Schafer JR, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  CAS  Google Scholar 

  14. Ross PL, Huang YLN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  Google Scholar 

  15. Sohn CH, Lee JE, Sweredoski MJ, Graham RLJ, Smith GT, Hess S, Czerwieniec G, Loo JA, Deshaies RJ, Beauchamp JL (2012) Click chemistry facilitates formation of reporter ions and simplified synthesis of amine-reactive multiplexed isobaric tags for protein quantification. J Am Chem Soc 134:2672–2680

    Google Scholar 

  16. Murray CI, Uhrigshardt H, O'Meally RN, Cole RN, Van Eyk JE (2011) Identification and quantification of S-nitrosylation by cysteine reactive tandem mass Tag switch assay. Mol Cell Proteomics. doi:10.1074/mcp.M111.013441

  17. Tambor V, Hunter CL, Seymour SL, Kacerovsky M, Stulik J, Lenco J (2012) CysTRAQ — a combination of iTRAQ and enrichment of cysteinyl peptides for uncovering and quantifying hidden proteomes. J Proteomics 75:857–867

    Article  CAS  Google Scholar 

  18. Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4:1240–1250

    Article  CAS  Google Scholar 

  19. Zhong J, Krawczyk SA, Chaerkady R, Huang H, Goel R, Bader JS, Wong GW, Corkey BE, Pandey A (2010) Temporal profiling of the secretome during adipogenesis in humans. J Proteome Res 9:5228–5238

    Article  CAS  Google Scholar 

  20. Dunkley TPJ, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C et al (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci U S A 103:6518–6523

    Article  CAS  Google Scholar 

  21. Hall SL, Hester S, Griffin JL, Lilley KS, Jackson AP (2009) The organelle proteome of the DT40 lymphocyte cell line. Mol Cell Proteomics 8:1295–1305

    Article  CAS  Google Scholar 

  22. Trotter MWB, Sadowski PG, Dunkley TPJ, Groen AJ, Lilley KS (2010) Improved sub-cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions. Proteomics 10:4213–4219

    Article  CAS  Google Scholar 

  23. Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC (2009) iTRAQ underestimation in simple and complex mixtures: “the good, the bad and the ugly”. J Proteome Res 8:5347–5355

    Article  CAS  Google Scholar 

  24. Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley KS (2010) Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 9:1885–1897

    Article  CAS  Google Scholar 

  25. Shirran SL, Botting CH (2010) A comparison of the accuracy of iTRAQ quantification by nLC-ESI MSMS and nLC-MALDI MSMS methods. J Proteomics 73:1391–1403

    Article  CAS  Google Scholar 

  26. Onsongo G, Stone MD, Van Riper SK, Chilton J, Wu B, Higgins L, Lund TC, Carlis JV, Griffin TJ (2010) LTQ-iQuant: a freely available software pipeline for automated and accurate protein quantification of isobaric tagged peptide data from LTQ instruments. Proteomics 10:3533–3538

    Article  CAS  Google Scholar 

  27. Zhang Y, Askenazi M, Jiang J, Luckey CJ, Griffin JD, Marto JA (2010) A robust error model for iTRAQ quantification reveals divergent signaling between oncogenic FLT3 mutants in acute myeloid leukemia. Mol Cell Proteomics 9:780–790

    Article  CAS  Google Scholar 

  28. Thingholm TE, Palmisano G, Kjeldsen F, Larsen MR (2010) Undesirable charge-enhancement of isobaric tagged phosphopeptides leads to reduced identification efficiency. J Proteome Res 9:4045–4052

    Article  CAS  Google Scholar 

  29. Pichler P, Kӧcher T, Holzmann J, Mӧhring T, Ammerer G, Mechtler K (2011) Improved precision of iTRAQ and TMT quantification by an axial extraction field in an Orbitrap HCD cell. Anal Chem 83:1469–1474

    Article  CAS  Google Scholar 

  30. Savitski M, Fischer F, Mathieson T, Sweetman G, Lang M, Bantscheff M (2010) Targeted data acquisition for improved reproducibility and robustness of proteomic mass spectrometry assays. J Am Soc Mass Spectrom 21:1668–1679

    Article  CAS  Google Scholar 

  31. Ow SY, Salim M, Noirel J, Evans C, Wright PC (2011) Minimising iTRAQ ratio compression through understanding LC-MS elution dependence and high-resolution HILIC fractionation. Proteomics 11:2341–2346

    Article  CAS  Google Scholar 

  32. Lau E, Lam MPY, Siu SO, Kong RPW, Chan WL, Zhou Z, Huang J, Lo C, Chu IK (2011) Combinatorial use of offline SCX and online RP-RP liquid chromatography for iTRAQ-based quantitative proteomics applications. Mol BioSyst 7:1399–1408

    Google Scholar 

  33. Köcher T, Pichler P, Schutzbier M, Stingl C, Kaul A, Teucher N, Hasenfuss G, Penninger JM, Mechtler K (2009) High precision quantitative proteomics using iTRAQ on an LTQ Orbitrap: a new mass spectrometric method combining the benefits of all. J Proteome Res 8:4743–4752

    Article  Google Scholar 

  34. Ting L, Rad R, Gygi SG, Haas W (2011) MS3 eliminates ratio distortion in isobaric labeling multiplexed quantitative proteomics. Nat Methods 8:937–940

    Article  CAS  Google Scholar 

  35. Wenger CD, Lee MV, Hebert AS, McAlister GC, Phanstiel DH, Westphall MS, Coon JJ (2011) Gas-phase purification enables accurate, large-scale, multiplexed proteome quantification. Nat Methods 8:933–935

    Article  CAS  Google Scholar 

  36. Noirel J, Evans C, Salim M, Mukherjee J, Yen Ow S, Pandhal J, Khoa Pham T, Biggs CA, Wright PC (2011) Methods in quantitative proteomics: setting iTRAQ on the right track. Curr Proteomics 8:17–30

    Article  CAS  Google Scholar 

  37. Gatto L, Lilley KS (2012) MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics 28:288–289

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a BBSRC grant (BB/D526088/1) which funded AC’s PhD studies. We would like to thank Julie Howard for helpful comments and suggestions about the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andy L. Christoforou or Kathryn S. Lilley.

Additional information

Published in the topical issue Quantitative Mass Spectrometry in Proteomics with guest editors Bernhard Kuster and Marcus Bantscheff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 63.1 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christoforou, A.L., Lilley, K.S. Isobaric tagging approaches in quantitative proteomics: the ups and downs. Anal Bioanal Chem 404, 1029–1037 (2012). https://doi.org/10.1007/s00216-012-6012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6012-9

Keywords

Navigation