Skip to main content
  • 854 Accesses

Abstract

Peroxisomes started their life relatively late in comparison to many of their earlier discovered siblings among the set of cell organelles such as the nuclei, the mitochondria, the chloroplasts, or the ER. In addition, the metabolic pathways first described to this organelle did not immediately suggest the biological significance of peroxisomes for cells, distinct tissues, or even a total organism as we know it today. The major unexpected breakthrough bringing them to the limelight of cell biology came with the discovery of the peroxisomal diseases. For 25 years now, they triggered research on peroxisome biogenesis, a scientific journey full of excitement and unexpected results, as the authors experienced themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agne B (2002) Untersuchungen zur Funktion von RING-Finger-Proteinen beim peroxisomalen Protein Import der Hefe Saccharomyces cerevisiae. Dissertation, Ruhr-Universität Bochum, Bochum

    Google Scholar 

  • Baker A, Kaplan CP, Pool MR (1992) Protein targeting and translocation; a comparative survey. Biol Rev Camb Philos Soc 71:637–702

    Article  Google Scholar 

  • Berger J, Gärtner J (2006) X-linked adrenoleukodystrophy: clinical, biochemical and pathogenetic aspects. Biochim Biophys Acta 1763:1721–1732

    Article  CAS  PubMed  Google Scholar 

  • Breidenbach RW, Beevers H (1967) Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem Biophys Res Commun 27:462–469

    Article  CAS  PubMed  Google Scholar 

  • Collins CS, Kalish JE, Morrell JC, McCaffery JM, Gould SJ (2000) The peroxisome biogenesis factors Pex4p, Pex22p, Pex1p, and Pex6p act in the terminal steps of peroxisomal matrix protein import. Mol Cell Biol 20:7516–7526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper TG, Beevers H (1969) Mitochondria and glyoxysomes from castor bean endosperm. Enzyme constitutents and catalytic capacity. J Biol Chem 244:3507–3513

    CAS  PubMed  Google Scholar 

  • Cregg JM, van der Klei IJ, Sulter GJ, Veenhuis M, Harder W (1990) Peroxisome-deficient mutants of Hansenula polymorpha. Yeast 6:87–97

    Article  CAS  Google Scholar 

  • Dammai V, Subramani S (2001) The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 105:187–196

    Article  CAS  PubMed  Google Scholar 

  • de Hoop MJ, Ab G (1992) Import of proteins into peroxisomes and other microbodies. Biochem J 286:657–669

    PubMed Central  PubMed  Google Scholar 

  • DeDuve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    CAS  Google Scholar 

  • Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW, Kiel JAKW, Kunau W-H, Lazarow PB, Mannaerts GP, Moser HW, Osumi T, Rachubinski RA, Roscher A, Subramani S, Tabak HF, Tsukamoto T, Valle D, van der Klei I, van Veldhoven PP, Veenhuis M (1996) A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135:1–3

    Article  CAS  PubMed  Google Scholar 

  • Dodt G, Gould SJ (1996) Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor. J Cell Biol 135:1763–1774

    Article  CAS  PubMed  Google Scholar 

  • Erdmann R, Veenhuis M, Mertens D, Kunau W-H (1989) Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 86:5419–5423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujiki Y, Matsuzono Y, Matsuzaki T, Fransen M (2006) Import of peroxisomal membrane proteins: the interplay of Pex3p- and Pex19p-mediated interactions. Biochim Biophys Acta 1763:1639–1646

    Article  CAS  PubMed  Google Scholar 

  • Fujiki Y, Nashiro C, Miyata N, Tamura S, Okumoto K (2012) New insights into dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p in shuttling of PTS1-receptor Pex5p during peroxisome biogenesis. Biochim Biophys Acta 1823:145–149

    Article  CAS  PubMed  Google Scholar 

  • Goldfischer S, Moor CL, Johnson AB, Spiro AJ, Valsamis MP, Wisniewski HK, Ritch RH, Norton WT, Rapin I, Gerner LM (1973) Peroxisomal and mitochondrial defects in cerebrohepatorenal syndrome. Science 182:62–64

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ, Keller GA, Subramani S (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol 105:2923–2931

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ, McCollum D, Spong AP, Heyman JA, Subramani S (1992) Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast 8:613–628

    Article  CAS  PubMed  Google Scholar 

  • Gouveia AM, Reguenga C, Oliveira ME, Sa-Miranda C, Azevedo JE (2000) Characterization of peroxisomal Pex5p from rat liver: Pex5p in the Pex5p-Pex14p membrane complex is a transmembrane protein. J Biol Chem 275:32444–32451

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Nishimura M (2006) Arabidopsis thaliana–a model organism to study plant peroxisomes. Biochim Biophys Acta 1763:1382–1391

    Article  CAS  PubMed  Google Scholar 

  • Hazra PP, Suriapranata I, Snyder WB, Subramani S (2002) Peroxisome remnants in pex3Delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes. Traffic 3:560–574

    Article  CAS  PubMed  Google Scholar 

  • Hettema EH, Girzalsky W, van Den Berg M, Erdmann R, Distel B (2000) Saccharomyces cerevisiae Pex3p and Pex19p are required for proper localization and stability of peroxisomal membrane proteins. EMBO J 19:223–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoepfner D, Schildknegt D, Braakman I, Philippsen P, Tabak HF (2005) Contribution of the endoplasmic reticulum to peroxisome formation. Cell 122:89–95

    Article  Google Scholar 

  • Kunau W-H (1998) Peroxisome biogenesis: from yeast to man. Curr Opin Microbiol 1:232–237

    Article  CAS  PubMed  Google Scholar 

  • Kunau W-H, Erdmann R (1998) Peroxisome biogenesis: back to the endoplasmic reticulum? Curr Biol 8:299–302

    Article  Google Scholar 

  • Kunau W (2001) Peroxisomes: the extended shuttle to the peroxisome matrix. Curr Biol 11:R659–R662

    Article  CAS  PubMed  Google Scholar 

  • Lazarow PB (2006) The import receptor Pex7p and the PTS2 targeting sequence. Biochim Biophys Acta 1763:1599–1604

    Article  CAS  PubMed  Google Scholar 

  • Lazarow PB, De Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci USA 73(6):2043–2046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lazarow PB, Fujiki Y (1985) Biogenesis of peroxisomes. Annu Rev Cell Biol 1:489–530

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Tan X, Veenhuis M, McCollum D, Cregg JM (1992) An efficient screen for peroxisome-deficient mutants of Pichia pastoris. J Bacteriol 174:4943–4951

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma C, Schumann U, Rayapuram N, Subramani S (2009) The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p. Mol Biol Cell 20:3680–3689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marzioch M, Erdmann R, Veenhuis M, Kunau W-H (1994) PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. EMBO J 13:4908–4918

    CAS  PubMed Central  PubMed  Google Scholar 

  • McNew JA, Goodman JM (1996) The targeting and assembly of peroxisomal proteins: some old rules do not apply. Trends Biochem Sci 21:54–58

    Article  CAS  PubMed  Google Scholar 

  • Meinecke M, Cizmowski C, Schliebs W, Kruger V, Beck S, Wagner R, Erdmann R (2010) The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 12:273–277

    CAS  PubMed  Google Scholar 

  • Moser HW (1993) Peroxisomal diseases. Adv Hum Genet 21:443–451

    Google Scholar 

  • Nuttall JM, Motley A, Hettema EH (2011) Peroxisome biogenesis: recent advances. Curr Opin Cell Biol 23:421–426

    Article  CAS  PubMed  Google Scholar 

  • Nuttley WM, Szilard RK, Smith JJ, Veenhuis M, Rachubinski RA (1995) The PAH2 gene is required for peroxisome assembly in the methylotrophic yeast Hansenula polymorpha and encodes a member of the tetratricopeptide repeat family of proteins. Gene 160:33–39

    Article  CAS  PubMed  Google Scholar 

  • Opperdoes FR (1988) Glycosomes may provide clues to the import of peroxisomal proteins. Trends Biochem Sci 13:255–260

    Article  CAS  PubMed  Google Scholar 

  • Platta HW, Grunau S, Rosenkranz K, Girzalsky W, Erdmann R (2005) Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat Cell Biol 7:817–822

    Article  CAS  PubMed  Google Scholar 

  • Purdue PE, Lazarow PB (2001) Peroxisome biogenesis. Annu Rev Cell Dev Biol 17:701–752

    Article  CAS  PubMed  Google Scholar 

  • Rhodin J (1954) Correlation of ultrastructural organization and function in normal and experimentally changed peroxisomal convoluted tubule cells of the mouse kidney. Dissertation, Aktiebolaget Godvil, Stockholm

    Google Scholar 

  • Rucktäschel R, Girzalsky W, Erdmann R (2011) Protein import machineries of peroxisomes. Biochim Biophys Acta 1808:892–900

    Article  PubMed  Google Scholar 

  • Samsom JF, Jakobs C, van de Klei-van Moorsel J, Smit LM, Schutgens RB, Wanders RJ (1992) Zellweger syndrome in a preterm, small for gestational age infant. J Inherit Metab Dis 15:75–83

    Article  CAS  PubMed  Google Scholar 

  • Schäfer A, Kerssen D, Veenhuis M, Kunau WH, Schliebs W (2004) Functional similarity between the peroxisomal PTS2 receptor binding protein Pex18p and the N-terminal half of the PTS1 receptor Pex5p. Mol Cell Biol 24:8895–8906

    Article  PubMed Central  PubMed  Google Scholar 

  • Schliebs W, Girzalsky W, Erdmann R (2010) Peroxisomal protein import and ERAD: variations on a common theme. Nat Rev Mol Cell Biol 11:885–890

    Article  CAS  PubMed  Google Scholar 

  • Schliebs W, Kunau WH (2006) PTS2 co-receptors: diverse proteins with common features. Biochim Biophys Acta 1763:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Schutgens RB, Heymans HS, Wanders RJ, van den Bosch H, Tager JM (1986) Peroxisomal disorders: a newly recognised group of genetic diseases. Eur J Pediatr 144:430–440

    Article  CAS  PubMed  Google Scholar 

  • Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW (2006) Peroxisome biogenesis disorders. Biochim Biophys Acta 1763:1733–1748

    Article  CAS  PubMed  Google Scholar 

  • Swinkels BW, Gould SJ, Bodnar AG, Rachubinski RA, Subramani S (1991) A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J 10:3255–3262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szilard RK, Titorenko VI, Veenhuis M, Rachubinski RA (1995) Pay32p of the Yeast Yarrowia lipolytica is an intraperoxisomal component of the matrix protein translocation machinery. J Cell Biol 131:1453–1469

    Article  CAS  PubMed  Google Scholar 

  • Tabak HF, Braakman I, van der Zand A (2013) Peroxisome formation and maintenance are dependent on the endoplasmic reticulum. Annu Rev Biochem 82:723–744

    Article  CAS  PubMed  Google Scholar 

  • Tager JM, Aerts JM, van den Bogert C, Wanders RJ (1994) Signals on proteins, intracellular targeting and inborn errors of organellar metabolism. J Inherit Metab Dis 17:459–468

    Article  CAS  PubMed  Google Scholar 

  • Theodoulou FL, Bernhardt K, Linka N, Baker A (2013) Peroxisome membrane proteins: multiple trafficking routes and multiple functions? Biochem J 451:345–352

    Article  CAS  PubMed  Google Scholar 

  • Tolbert NE (1981) Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem 50:133–157

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto T, Yokota S, Fujiki Y (1990) Isolation and characterization of Chinese hamster ovary cell mutants defective in assembly of peroxisomes. J Cell Biol 110:651–660

    Article  CAS  PubMed  Google Scholar 

  • van der Klei IJ, Veenhuis M (2006) Yeast and filamentous fungi as model organisms in microbody research. Biochim Biophys Acta 1763:1364–1373

    Article  PubMed  Google Scholar 

  • van der Leij I, van den Berg M, Boot R, Franse MM, Distel B, Tabak HF (1992) Isolation of peroxisome assembly mutants from Saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. J Cell Biol 119:153–162

    Article  PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2006) Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta 1763:1707–1720

    Article  CAS  PubMed  Google Scholar 

  • Waterham HR, Ebberink MS (2012) Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta 1822:1430–1441

    Article  CAS  PubMed  Google Scholar 

  • Zellweger H (1965) Genetic Aspects of Neurological Disease. Arch Intern Med 115:387–397

    Article  CAS  PubMed  Google Scholar 

  • Zhang JW, Han Y, Lazarow PB (1991) Novel peroxisome clustering mutants and peroxisome biogenesis mutants of Saccharomyces cerevisiae. J Cell Biol 123:1133–1147

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wilhelm Just or Wolf-H. Kunau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Just, W., Kunau, WH. (2014). History and Discovery of Peroxins. In: Brocard, C., Hartig, A. (eds) Molecular Machines Involved in Peroxisome Biogenesis and Maintenance. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1788-0_1

Download citation

Publish with us

Policies and ethics