Skip to main content

Physical Activity and Cardiovascular Diseases Epidemiology and Primary Preventive and Therapeutic Targets

  • Chapter
  • First Online:
Interdisciplinary Concepts in Cardiovascular Health

Abstract

Following the publication of the landmark study of Morris and colleagues, a plethora of evidences confirmed the inverse and independent relationship between physical activity and cardiovascular as well as overall mortality. It has been established that regular physical activity elicits its beneficial health effects by reducing especially those cardiovascular risk factors which are associated with metabolic disorders, e.g., hyperlipidemia, glucose intolerance, or systemic hypertension, but physical activity has also been shown directly to inhibit the development of atherosclerosis and associated cardiovascular diseases, e.g., by preventing or correcting endothelial dysfunction or due to cardiovascular remodeling. Nowadays, fascinating experimental studies more and more discover cellular and molecular mechanisms as primary risk factors and explain how physical activity fights the development of cardiovascular diseases. Oxidative stress, low NO bioavailability, and inflammation are considered as primary targets for modification of risk factors by regular exercise training. All these factors are closely interrelated and may play important roles in the development of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, Price JW 3rd, Kang L, Rabinovitch PS, Szeto HH, Houmard JA, Cortright RN, Wasserman DH, Neufer PD (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 119:573–581

    Article  PubMed  CAS  Google Scholar 

  • Arakawa K (1996) Effect of exercise on hypertension and associated complications. Hypertens Res 19(Suppl 1):S87–S91

    Article  PubMed  Google Scholar 

  • Arima H, Barzi F, Chalmers J (2011) Mortality patterns in hypertension. J Hyperterns 29 Suppl 1:S3–7

    Article  PubMed  Google Scholar 

  • Balligand JL, Feron O, Dessy C (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89:481–534

    Article  PubMed  CAS  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  PubMed  CAS  Google Scholar 

  • Blair SN, Kohl HW, Paffenbarger RS, Clark DG, Cooper KH, Gibbons LW (1989) Physical fitness and all-cause mortality: a prospective study of healthy men and women. JAMA 262:2395–2401

    Article  PubMed  CAS  Google Scholar 

  • Blair SN, Kohl HW, Barlow CE, Paffenbarger RS, Gibbons LW, Macera CA (1995) Changes in physical fitness and all-cause mortality: a prospective study in healthy and unhealthy men. JAMA 273:1093–1098

    Article  PubMed  CAS  Google Scholar 

  • Bloomer RJ (2008) Effect of exercise on oxidative stress biomarkers. Adv Clin Chem 46:1–50

    Article  PubMed  CAS  Google Scholar 

  • Boström P, Mann N, Wu J, Quintero PA, Plovie ER, Panáková D, Gupta RK, Xiao C, MacRae CA, Rosenzweig A, Spiegelman BM (2010) C/EBPb controls exercise-induced cardiac growthand protects against pathological cardiac remodeling. Cell 143:1072–1083

    Article  PubMed  Google Scholar 

  • Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsøe R, Dela F (2007) Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790–796

    Article  PubMed  CAS  Google Scholar 

  • Brennan ML, Penn MS, Van Lente F, Nambi V, Shishehbor MH, Aviles RJ, Goormastic M, Pepoy ML, McErlean ES, Topol EJ, Nissen SE, Hazen SL (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349:1595–1604

    Article  PubMed  CAS  Google Scholar 

  • Burtscher M (2012) Lifetime risks of cardiovascular disease. N Engl J Med 366:1642

    PubMed  CAS  Google Scholar 

  • Burtscher M, Ponchia A (2010) The risk of cardiovascular events during leisure time activities at altitude. Prog Cardiovasc Dis 52:507–511

    Article  PubMed  Google Scholar 

  • Burtscher M, Gatterer H, Kunczicky H, Brandstätter E, Ulmer H (2009) Supervised exercise in patients with impaired fasting glucose: impact on exercise capacity. Clin J Sport Med 19:394–398

    Article  PubMed  Google Scholar 

  • Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844

    Article  PubMed  CAS  Google Scholar 

  • Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  PubMed  Google Scholar 

  • Dai DF, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintrón M, Chen T, Marcinek DJ, Dorn GW 2nd, Kang YJ, Prolla TA, Santana LF, Rabinovitch PS (2011) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res 108:837–846

    Article  PubMed  CAS  Google Scholar 

  • Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109(supplIII):27–32

    Google Scholar 

  • De Palma C, Falcone S, Pisoni S, Cipolat S, Panzeri C, Pambianco S, Pisconti A, Allevi R, Bassi MT, Cossu G, Pozzan T, Moncada S, Scorrano L, Brunelli S, Clementi E (2010) Nitric oxide inhibition of Drp1-mediated mitochondrial fission is critical for myogenic differentiation. Cell Death Differ 17:1684–1696

    Article  PubMed  Google Scholar 

  • Di Francescomarino S, Sciartilli A, Di Valerio V, Di Baldassarre A, Gallina S (2009) The effect of exercise on endothelial function. Sports Med 39:797–812

    Article  PubMed  Google Scholar 

  • Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    Article  PubMed  CAS  Google Scholar 

  • Eaton SB, Konner M (1985) Paleolithic nutrition: a consideration of its nature and current implications. N Engl J Med 312:283–289

    Article  PubMed  CAS  Google Scholar 

  • Ellison GM, Waring CD, Vicinanza C, Torella D (2012) Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart 98:5–10

    Article  PubMed  CAS  Google Scholar 

  • Garnier A, Fortin D, Zoll J, N’Guessan B, Mettauer B, Lampert E, Veksler V, Ventura-Clapier R (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19:43–52

    Article  PubMed  CAS  Google Scholar 

  • Gnaiger E (1993) Efficiency and power strategies under hypoxia. Is low efficiency at high glycolytic ATP production a paradox? In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) Surviving hypoxia: mechanisms of control and adaptation. CRC Press, Boca Raton/Ann Arbor/London, pp 77–109

    Google Scholar 

  • Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41:1837–1845

    Article  PubMed  CAS  Google Scholar 

  • Goodwill AG, Stapleton PA, James ME, D’Audiffret AC, Frisbee JC (2008) Increased arachidonic acid-induced thromboxane generation impairs skeletal muscle arteriolar dilation with genetic dyslipidemia. Microcirculation 15:621–631

    Article  PubMed  CAS  Google Scholar 

  • Goto C, Higashi Y, Kimura M, Noma K, Hara K, Nakagawa K, Kawamura M, Chayama K, Yoshizumi M, Nara I (2003) Effect of different intensities of exercise on endothelium-­dependent vasodilation in human: role of endothelium-dependent nitric oxide and oxidative stress. Circulation 108:530–535

    Article  PubMed  Google Scholar 

  • Hafstad AD, Boardman NT, Lund J, Hagve M, Khalid AM, Wisløff U, Larsen TS, Aasum E (2011) High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart. J Appl Physiol 111:1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Haram PM, Kemi OJ, Lee SJ, Bendheim MØ, Al-Share QY, Waldum HL, Gilligan LJ, Koch LG, Britton SL, Najjar SM, Wisløff U (2009) Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovasc Res 81:723–732

    Article  PubMed  CAS  Google Scholar 

  • Hey-Mogensen M, Højlund K, Vind BF, Wang L, Dela F, Beck-Nielsen H, Fernström M, Sahlin K (2010) Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes. Diabetologia 53:1976–1985

    Article  PubMed  CAS  Google Scholar 

  • Holmström MH, Iglesias-Gutierrez E, Zierath JR, Garcia-Roves PM (2012) Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes. Am J Physiol Endocrinol Metab 302:E731–E739

    Article  PubMed  Google Scholar 

  • Ignarro LJ, Balestrieri ML, Napoli C (2007) Nutrition, physical activity, and cardiovascular disease: an update. Cardiovasc Res 73:326–340

    Article  PubMed  CAS  Google Scholar 

  • Indolfi C, Torella D, Coppola C, Curcio A, Rodriguez F, Bilancio A, Leccia A, Arcucci O, Falco M, Leosco D, Chiariello M (2002) Physical training increases eNOS vascular expression and activity and reduces restenosis after balloon angioplasty or arterial stenting in rats. Circ Res 91:1190–1197

    Article  PubMed  CAS  Google Scholar 

  • Kavazis AN, McClung JM, Hood DA, Powers SK (2008) Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli. Am J Physiol Heart Circ Physiol 294:H928–H935

    Article  PubMed  CAS  Google Scholar 

  • Kivelä R, Silvennoinen M, Lehti M, Rinnankoski-Tuikka R, Purhonen T, Ketola T, Pullinen K, Vuento M, Mutanen N, Sartor MA, Reunanen H, Koch LG, Britton SL, Kainulainen H (2010) Gene expression centroids that link with low intrinsic aerobic capacity and complex disease risk. FASEB J 24:4565–4574

    Article  PubMed  Google Scholar 

  • Kokkinos P, Myers J, Kokkinos JP, Pittaras A, Narayan P, Manolis A, Karasik P, Greenberg M, Papademetriou V, Singh S (2008) Exercise capacity and mortality in black and white men. Circulation 117:614–622

    Article  PubMed  Google Scholar 

  • Kokkinos P, Sheriff H, Kheirbek R (2011) Physical inactivity and mortality risk. Cardiol Res Pract 2011:924945

    PubMed  Google Scholar 

  • Kramer HF, Goodyear LJ (2007) Exercise, MAPK, and NF-κB signaling in skeletal muscle. J Appl Physiol 103:388–395

    Article  PubMed  CAS  Google Scholar 

  • Larsen S, Ara I, Rabøl R, Andersen JL, Boushel R, Dela F, Helge JW (2009) Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes? Diabetologia 52:1400–1408

    Article  PubMed  CAS  Google Scholar 

  • Laughlin MH, Newcomer SC, Bender SB (2008) Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J Appl Physiol 104:588–600

    Article  PubMed  Google Scholar 

  • Lee IM, Skerrett PJ (2001) Physical activity and all-cause mortality: what is the dose-response relation? Med Sci Sports Exerc 33:S459–S471

    Article  PubMed  CAS  Google Scholar 

  • Lemieux H, Semsroth S, Antretter H, Hoefer D, Gnaiger E (2011) Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43:1729–1738

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801

    Article  PubMed  CAS  Google Scholar 

  • McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henry WR, Andrews JW, Hayes JR (1992) Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin dependent) diabetes mellitus. Diabetologia 35:771–776

    PubMed  CAS  Google Scholar 

  • Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, RidderstrÃ¥le M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273

    Article  PubMed  CAS  Google Scholar 

  • Morris JN, Heady JA, Raffle PAB, Roberts CG, Parks JW (1953) Coronary heart-disease and physical activity of work. Lancet 265:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346:793–801

    Article  PubMed  Google Scholar 

  • Newsholme P, Homem De Bittencourt PI, O’ Hagan C, De Vito G, Murphy C, Krause MS (2010) Exercise and possible molecular mechanisms of protection from vascular disease and diabetes: the central role of ROS and nitric oxide. Clin Sci 118:341–349

    Article  CAS  Google Scholar 

  • Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317

    Article  PubMed  CAS  Google Scholar 

  • Nisoli E, Clementi E, Carruba MO, Moncada S (2007) Defective mitochondrial biogenesis. A ­hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res 100:795–806

    Article  PubMed  CAS  Google Scholar 

  • O’Gorman DJ, Karlsson HK, McQuaid S, Yousif O, Rahman Y, Gasparro D, Glund S, Chibalin AV, Zierath JR, Nolan JJ (2006) Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia 49:2983–2992

    Article  PubMed  Google Scholar 

  • Ohta M, Nanri H, Matsushima Y, Sato Y, Ikeda M (2005) Blood pressure-lowering effects of lifestyle modification: possible involvement of nitric oxide bioavailability. Hypertens Res 28:779–786

    Article  PubMed  CAS  Google Scholar 

  • Paffenbarger RS, Hale WE (1975) Work activity and coronary heart mortality. N Engl J Med 292:545–550

    Article  PubMed  CAS  Google Scholar 

  • Paffenbarger RS, Hyde RT, Wing AL, Hsieh CC (1986) Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med 314:605–613

    Article  PubMed  Google Scholar 

  • Paffenbarger RS, Hyde RT, Wing AL, Lee IM, Jung DL, Kampert JB (1993) The association of changes in physical-activity level and other life-style characteristics with mortality among men. N Engl J Med 328:538–545

    Article  PubMed  Google Scholar 

  • Pedersen BK (2009) The diseasome of physical inactivity: and the role of myokines in muscle-fat-cross talk. J Physiol 587:5559–5568

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK, Steensberg A (2002) Exercise and hypoxia: effects on leukocytes and interleukin-6-shared mechanisms? Med Sci Sports Exerc 34:2004–2013

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK, Akerstrom TC, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Physiol 103:1093–1098

    Article  PubMed  CAS  Google Scholar 

  • Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E (2011) Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 301:R1078–1087

    Article  PubMed  CAS  Google Scholar 

  • Petersen AMW, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Phielix E, Meex R, Moonen-Kornips E, Hesselink MK, Schrauwen P (2010) Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia 53:1714–1721

    Article  PubMed  CAS  Google Scholar 

  • Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR, Pedersen BK (2005) Tumor necrosis factor-α induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 54:2939–2945

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Lennon SL, Quindry J, Mehta JL (2002) Exercise and cardioprotection. Curr Opin Cardiol 17:495–502

    Article  PubMed  Google Scholar 

  • Rabøl R, Højberg PM, Almdal T, Boushel R, Haugaard SB, Madsbad S, Dela F (2009) Effect of hyperglycemia on mitochondrial respiration in type 2 diabetes. J Clin Endocrinol Metabol 94:1372–1378

    Article  Google Scholar 

  • Richter EA, Ruderman NB (2009) AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J 418:261–275

    Article  PubMed  CAS  Google Scholar 

  • Rizvi AA (2009) Cytokine biomarkers, endothelial inflammation, and atherosclerosis in the metabolic syndrome: emerging concepts. Am J Med Sci 338:310–318

    Article  PubMed  Google Scholar 

  • Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–116

    Article  PubMed  CAS  Google Scholar 

  • Seals DR, Desouza CA, Donato AJ, Tanaka H (2008) Habitual exercise and arterial aging. J Appl Physiol 105:1323–1332

    Article  PubMed  Google Scholar 

  • Shephard RJ, Balady GJ (1999) Exercise as cardiovascular therapy. Circulation 99:963e72

    Article  Google Scholar 

  • Stamler J, Stamler R, Neaton JD (1993) Blood pressure, systolic and diastolic, and cardiovascular risks: US population data. Arch Intern Med 153:598–615

    Article  PubMed  CAS  Google Scholar 

  • Stapleton PA, Goodwill AG, James ME, Brock RW, Frisbee JC (2010) Hypercholesterolemia and microvascular dysfunction: interventional strategies. J Inflamm 7:54

    Article  Google Scholar 

  • Suzuki K, Ohno H, Oh-ishi S, Kizaki T, Ookawara T, Fujii J, Radak Z, Taniguchi N (2000) Superoxide dismutases in exercise and disease. In: Sen CK, Packer L, Häninen O (eds) Handbook of oxidants and antioxidants in exercise. Elsevier, Amsterdam, pp 243–295

    Google Scholar 

  • Swain DP, Franklin BA (2006) Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol 97:141–147

    Article  PubMed  Google Scholar 

  • Szostak J, Laurant P (2011) The forgotten face of regular physical exercise: a natural anti-­atherogenic activity. Clin Sci 121:91–106

    Article  PubMed  Google Scholar 

  • Thompson PD (2005) Exercise prescription and proscription for patients with coronary artery disease. Circulation 112:2354–2363

    Article  PubMed  Google Scholar 

  • Thompson PD, Buchner D, Pina IL, Balady GJ, Williams MA, Marcus BH, Berra K, Blair SN, Costa F, Franklin B, Fletcher GF, Gordon NF, Pate RR, Rodriguez BL, Yancey AK, Wenger NK, American Heart Association Council on Clinical Cardiology Subcommittee on Exercise, Rehabilitation, and Prevention, American Heart Association Council on Nutrition, Physical Activity, and Metabolism Subcommittee on Physical Activity (2003) Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease. Circulation 107:3109–3116

    Article  PubMed  Google Scholar 

  • Toth KG, McKay BR, De Lisio M, Little JP, Tarnopolsky MA, Parise G (2011) IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLoS One 6:e17392

    Article  PubMed  CAS  Google Scholar 

  • Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M, Finnish Diabetes Prevention Study Group (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:134–150

    Article  Google Scholar 

  • Tuteja N, Chandra M, Tuteja R, Misra MK (2004) Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J Biomed Biotechnol 4:227–237

    Article  Google Scholar 

  • Tweedie C, Romestaing C, Burelle Y, Safdar A, Tarnopolsky MA, Seadon S, Britton SL, Koch LG, Hepple RT (2011) Lower oxidative DNA damage despite greater ROS production in muscles from rats selectively bred for high running capacity. Am J Physiol Regul Integr Comp Physiol 300:R544–R553

    Article  PubMed  CAS  Google Scholar 

  • Votion DM, Gnaiger E, Lemieux H, Mouithys-Mickalad A, Serteyn D (2012) Physical fitness and mitochondrial respiratory capacity in horse skeletal muscle. PLoS One 7:e34890

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Moraes CT (2011) Increases in mitochondrial biogenesis impair carcinogenesis at multiple levels. Mol Oncol 5:399–409

    Article  PubMed  CAS  Google Scholar 

  • Waring CD, Papalambrou A, Sharp L, Smith AJ, Purushothaman S, Vicinanza C, Goldspink D, Torella D, Nadal-Ginard B, Ellison GM (2010) Cardiac stem cell activation and ensuing myogenesis and angiogenesis contribute to cardiac adaptation following intensity-controlled exercise training. Circulation 122:A19155

    Google Scholar 

  • Wei M, Gibbons LW, Mitchell TL, Kampert JB, Lee CD, Blair SN (1999) The association between cardiorespiratory fitness and impaired fasting glucose and type 2 diabetes mellitus in men. Ann Intern Med 130:89–96

    Article  PubMed  CAS  Google Scholar 

  • Weiner RB, Baggish AL (2012) Exercise-induced cardiac remodeling. Prog Cardiovasc Dis 54:380–386

    Article  PubMed  Google Scholar 

  • Wisløff U, Najjar SM, Ellingsen O, Haram PM, Swoap S, Al-Share Q, Fernström M, Rezaei K, Lee SJ, Koch LG, Britton SL (2005) Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 307:418–420

    Article  PubMed  Google Scholar 

  • Wyatt AW, Steinert JR, Mann GE (2004) Modulation of the L-arginine/nitric oxide signalling pathway in vascular endothelial cells. Biochem Soc Symp 71:143–156

    PubMed  CAS  Google Scholar 

  • Zimmet P, Alberti K, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    Article  PubMed  CAS  Google Scholar 

  • Zoll J, N’Guessan B, Ribera F, Lampert E, Fortin D, Veksler V, Bigard X, Geny B, Lonsdorfer J, Ventura-Clapier R, Mettauer B (2003) Preserved response of mitochondrial function to short-term endurance training in skeletal muscle of heart transplant recipients. J Am Coll Cardiol 42:126–132

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This chapter is a contribution to K-Regio project MitoCom Tyrol, funded by the Tyrolian Government and the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Burtscher MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Burtscher, M., Gnaiger, E. (2013). Physical Activity and Cardiovascular Diseases Epidemiology and Primary Preventive and Therapeutic Targets. In: Wakabayashi, I., Groschner, K. (eds) Interdisciplinary Concepts in Cardiovascular Health. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1334-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1334-9_6

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1333-2

  • Online ISBN: 978-3-7091-1334-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics