Skip to main content

Synthesis and Degradation of Proteins in Pigs

  • Chapter
  • First Online:
Nutritional and Physiological Functions of Amino Acids in Pigs
  • 1877 Accesses

Abstract

Growth of animals is the complex result of competition between anabolic and catabolic process, which implies constant changes and remodeling through synthesis of new proteins and breakdown of existing proteins (Jobgen et al. 2006; Tan et al.,2009). Together, these processes are called protein turnover and produce muscle growth or hypertrophy when synthesis is greater than breakdown and muscle wasting when synthesis is less than breakdown (Norton and Layman 2006). Protein turnover requires large amounts of ATP. However, this costly metabolic cycle fulfills key obligatory functions, including protein homeostasis, cell turnover, removal of aged and damaged proteins, synthesis of new proteins like heat-shock and immunological proteins, gluconeogenesis from amino acids, wound healing, tissue repair, adaptation to nutritional and pathological alterations, and immune responses (Wu 2009). In pigs, although the protein syntheses increase in all tissues, the greatest response occurs in skeletal muscle in response to feeding stimulation. The elevated postprandial protein synthesis in skeletal muscle of pigs therefore increases the protein deposition during the post-absorptive period allowing growth and development. A sharp increase of circulating glucose, insulin, and amino acids, especially some nutritional indispensable amino acids, is observed after meal (Yin et al. 2010, 2011), in accordance with higher protein deposition in pigs (Drew et al. 2012). The mechanism responsible for the stimulation of protein synthesis by feeding was therefore focused on the roles of postprandial circulating glucose, insulin, and amino acids. The protein degradation is a process where proteins are broken into smaller peptides as well as free amino acids, the latter being either reused for new protein synthesis or further degraded into several metabolites, several of them being able to generate ATP for energy use. In addition, the protein degradation plays important roles in animal physiological process, especially in the cellular signal transduction system as well as in the maintenance of the integrity of the proper folded state of protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avruch J, Hara K, Lin Y, Liu M, Long X, Ortiz-Vega S, Yonezawa K (2006) Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. Oncogene 25(48):6361–6372

    Article  PubMed  CAS  Google Scholar 

  • Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6(6):505–510

    Article  PubMed  CAS  Google Scholar 

  • Bates PC, Millward DJ (1981) Characteristics of skeletal muscle growth and protein turnover in a fast-growing rat strain. Br J Nutr 46(1):7–13

    Article  PubMed  CAS  Google Scholar 

  • Baumeister W, Walz J, Proteolysis C (1998) The proteasome: paradigm review of a self-compartmentalizing protease. Cell 92:367–389

    Article  PubMed  CAS  Google Scholar 

  • Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139(5):821–825

    Article  PubMed  CAS  Google Scholar 

  • Burrin DG, Shulman RJ, Reeds PJ, Davis TA, Gravitt KR (1992) Porcine colostrum and milk stimulate visceral organ and skeletal muscle protein synthesis in neonatal piglets. J Nutr 122(6):1205–1213

    PubMed  CAS  Google Scholar 

  • Bush JA, Kimball SR, O’Connor PMJ, Suryawan A, Orellana RA, Nguyen HV, Jefferson LS, Davis TA (2003) Translational control of protein synthesis in muscle and liver of growth hormone-treated pigs. Endocrinology 144(4):1273–1283

    Article  PubMed  CAS  Google Scholar 

  • Davis TA (2008) Insulin and amino acids are critical regulators of neonatal muscle growth. Nutrition today 43(4):143–149

    Article  PubMed  Google Scholar 

  • Davis TA, Nguyen HV, Suryawan A, Bush JA, Jefferson LS, Kimball SR (2000) Developmental changes in the feeding-induced stimulation of translation initiation in muscle of neonatal pigs. Am J Physiol Endocrinol Metab 279(6):E1226–E1234

    PubMed  CAS  Google Scholar 

  • Davis TA, Fiorotto ML, Beckett PR, Burrin DG, Reeds PJ, Wray-Cahen D, Nguyen HV (2001) Differential effects of insulin on peripheral and visceral tissue protein synthesis in neonatal pigs. Am J Physiol Endocrinol Metab 280(5):E770–E779

    PubMed  CAS  Google Scholar 

  • Davis TA, Suryawan A, Orellana RA, Nguyen HV, Fiorotto ML (2008) Postnatal ontogeny of skeletal muscle protein synthesis in pigs. J Anim Sci 86(14 suppl):E13–E18

    PubMed  CAS  Google Scholar 

  • Deng D, Yao K, Chu WY, Li TJ, Huang RL, Yin YL, Liu HQ, Zhang JS, Wu GY (2009) Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem 20:544–552

    Article  PubMed  CAS  Google Scholar 

  • Deng J, Wu X, Bin S, Li TJ, Huang R, Liu Z, Liu Y, Ruan Z, Deng Z, Hou Y, Yin YL (2010) Dietary amylose and amylopectin ratio and resistant starch content affects plasma glucose, lactic acid, hormone levels 1 and protein synthesis in splanchnic tissues. Z Tierphysiol Tierernahr Futtermittelkd 94:220–226

    CAS  Google Scholar 

  • Di Guglielmo GM, Baass PC, Authier F, Posner BI, Bergeron JJM (1998) Insulin receptor internalization and signalling. Mol Cell Biochem 182(1):59–63

    Article  PubMed  Google Scholar 

  • Drew MD, Schafer TC, Zijlstra RT (2012) Glycemic index of starch affects nitrogen retention in grower pigs. J Anim Sci 90(4):1233–1241

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428

    PubMed  CAS  Google Scholar 

  • Goberdhan DCI, Wilson C (2003) PTEN: tumour suppressor, multifunctional growth regulator and more. Hum Mol Genet 12(suppl 2):R239–R248

    Article  PubMed  CAS  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83(3):731–801

    PubMed  CAS  Google Scholar 

  • Gronostajski RM, Goldberg AL, Pardee AB (1984) The role of increased proteolysis in the atrophy and arrest of proliferation in serum-deprived fibroblasts. J Cell Physiol 121(1):189–198

    Article  PubMed  CAS  Google Scholar 

  • Jeyapalan AS, Orellana RA, Suryawan A, O’Connor PMJ, Nguyen HV, Escobar J, Frank JW, Davis TA (2007) Glucose stimulates protein synthesis in skeletal muscle of neonatal pigs through an AMPK- and mTOR-independent process. American Journal of Physiology - Endocrinology And Metabolism 293(2):E595–E603

    Article  PubMed  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17(9):571–588

    Article  PubMed  CAS  Google Scholar 

  • Kimball S (2007) The role of nutrition in stimulating muscle protein accretion at the molecular level. Biochem Soc Trans 35:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Kimball SR, Jefferson LS (2004) Molecular mechanisms through which amino acids mediate signaling through the mammalian target of rapamycin. Curr Opin Clin Nutr Metab Care 7(1):39–44

    Article  PubMed  CAS  Google Scholar 

  • Kimball SR, Jefferson LS, Nguyen HV, Suryawan A, Bush JA, Davis TA (2000) Feeding stimulates protein synthesis in muscle and liver of neonatal pigs through an mTOR-dependent process. Am J Physiol Endocrinol Metab 279(5):E1080–E1087

    PubMed  CAS  Google Scholar 

  • Kong XF, Tan BE, Yin YL, Li XL, Jaeger LA, Bazer FW, Wu GY (2012) Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem 23(9):1178–1183

    Article  PubMed  CAS  Google Scholar 

  • Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. J Am Soc Nephrol 17:1807–1819

    Article  PubMed  CAS  Google Scholar 

  • Li F, Yin Y, Tan B, Kong X, Wu G (2011) Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 41:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Liu JG, Zhang P, Bin SY (2007) Effects of different dietary starch constituents on level of blood glucose and insulin of weaned piglets (article in Chinese). Food Sci 28:315–319 (in Chinese)

    Google Scholar 

  • Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15(8):702–713

    Article  PubMed  CAS  Google Scholar 

  • Norton LE, Layman DK (2006) Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr 136(2):533S–537S

    PubMed  CAS  Google Scholar 

  • O’Connor PMJ, Bush JA, Suryawan A, Nguyen HV, Davis TA (2003a) Insulin and amino acids independently stimulate skeletal muscle protein synthesis in neonatal pigs. Am J Physiol Endocrinol Metab 284(1):E110–E119

    PubMed  Google Scholar 

  • O’Connor PM, Kimball SR, Suryawan A, Bush JA, Nguyen HV, Jefferson LS, Davis TA (2003b) Regulation of translation initiation by insulin and amino acids in skeletal muscle of neonatal pigs. Am J Physiol Endocrinol Metab 285(1):E40–E53

    PubMed  Google Scholar 

  • O’Connor PM, Kimball SR, Suryawan A, Bush JA, Nguyen HV, Jefferson LS, Davis TA (2004) Regulation of neonatal liver protein synthesis by insulin and amino acids in pigs. Am J Physiol Endocrinol Metab 286(6):E994–E1003

    Article  PubMed  Google Scholar 

  • Regmi PR, Matte JJ, van Kempen T, Zijlstra RT (2010) Starch chemistry affects kinetics of glucose absorption and insulin response in swine. Livest Sci 134(1–3):44–46

    Article  Google Scholar 

  • Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91(4):443–446

    Article  PubMed  CAS  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  PubMed  CAS  Google Scholar 

  • Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA (2003) Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5(6):566–571

    Article  PubMed  CAS  Google Scholar 

  • Stoll B, Burrin DG (2006) Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J Anim Sci 84(13 suppl):E60–E72

    PubMed  Google Scholar 

  • Suryawan A, Nguyen HV, Bush JA, Davis TA (2001) Developmental changes in the feeding-induced activation of the insulin-signaling pathway in neonatal pigs. Am J Physiol Endocrinol Metab 281(5):E908–E915

    PubMed  CAS  Google Scholar 

  • Suryawan A, Orellana RA, Nguyen HV, Jeyapalan AS, Fleming JR, Davis TA (2007) Activation by insulin and amino acids of signaling components leading to translation initiation in skeletal muscle of neonatal pigs is developmentally regulated. Am J Physiol Endocrinol Metab 293(6):E1597–E1605

    Article  PubMed  CAS  Google Scholar 

  • Suryawan A, Jeyapalan AS, Orellana RA, Wilson FA, Nguyen HV, Davis TA (2008) Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation. Am J Physiol Endocrinol Metab 295(4):E868–E875

    Article  PubMed  CAS  Google Scholar 

  • Tan B, Yin YL, Liu ZQ, Li XG, Xu HJ, Kong XF, Huang RL, Tang WJ, Shinzato I, Smith SB, Wu GY (2009) Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  PubMed  CAS  Google Scholar 

  • Tremblay F, Gagnon AM, Veilleux A, Sorisky A, Marette A (2005) Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3 T3-L1 and human adipocytes. Endocrinology 146(3):1328–1337

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Proud CG (2006) The mTOR pathway in the control of protein synthesis. Physiology (Bethesda) 21:362–369

    Article  CAS  Google Scholar 

  • Wang L, Rhodes CJ, Lawrence JC (2006) Activation of mammalian target of rapamycin (mTOR) by insulin is associated with stimulation of 4EBP1 binding to dimeric mTOR complex 1. J Biol Chem 281(34):24293–24303

    Article  PubMed  CAS  Google Scholar 

  • Watford M (2008) Glutamine metabolism and function in relation to proline synthesis and the safety of glutamine and proline supplementation. J Nutr 138(10):2003S–2007S

    PubMed  CAS  Google Scholar 

  • Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34(1):7–11

    Article  PubMed  CAS  Google Scholar 

  • Wilson FA, Suryawan A, Orellana RA, Kimball SR, Gazzaneo MC, Nguyen HV, Fiorotto ML, Davis TA (2009) Feeding Rapidly Stimulates Protein Synthesis in Skeletal Muscle of Neonatal Pigs by Enhancing Translation Initiation. J Nutr 139(10):1873–1880

    Article  PubMed  CAS  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128(8):1249–1252

    Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1):1–17

    Article  PubMed  Google Scholar 

  • Wu G (2010) Recent advances in swine amino acid nutrition. J Anim Sci Biotechnol 1:49–61

    Google Scholar 

  • Yao K, Yin Y, Chu W, Liu Z, Deng D, Li T, Huang R, Zhang J, Tan B, Wang W, Wu G (2008) Dietary Arginine Supplementation Increases mTOR Signaling Activity in Skeletal Muscle of Neonatal Pigs. J Nutr 138(5):867–872

    PubMed  CAS  Google Scholar 

  • Yao K, Guan S, Li TJ, Yin YL (2011) Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. Br J Nutr 105:703–709

    Article  PubMed  CAS  Google Scholar 

  • Yao K, Wang L, Ding BY, Fu DB, Liu YL, Zhu HL, Liu J, Li YT, Kang P, Yin YL, Wu GY, Hou YQ (2012) Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids 42(6):2491–2500

    Article  PubMed  CAS  Google Scholar 

  • Yin F, Zhang Z, Huang J, Yin Y (2010) Digestion rate of dietary starch affects systemic circulation of amino acids in weaned pigs. Br J Nutr 103:1404–1412

    Article  PubMed  CAS  Google Scholar 

  • Yin F, Yin Y, Zhang Z, Xie M, Huang J, Huang R, Li T (2011) Digestion rate of dietary starch affects the systemic circulation of lipid profiles and lipid metabolism-related gene expression in weaned pigs. Br J Nutr 106:369–377

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Yin, F., Yin, Y., Hou, Y. (2013). Synthesis and Degradation of Proteins in Pigs. In: Blachier, F., Wu, G., Yin, Y. (eds) Nutritional and Physiological Functions of Amino Acids in Pigs. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1328-8_8

Download citation

Publish with us

Policies and ethics