Skip to main content

Passivity-Based Tracking Control of a Flexible Link Robot

  • Conference paper
  • First Online:
Multibody System Dynamics, Robotics and Control

Abstract

This contribution addresses modeling and control of highly complex nonlinear mechanical systems such as an articulated robot with two flexible links and three flexible joints. We employ the Projection Equation in subsystem formulation, a very efficient method for modeling repeating assemblies and beam elasticities and apply a Ritz expansion to obtain ordinary differential equations of motion. For model-based control design, the small elastic deformations of the beams are approximated with linear springs and dampers in a lumped element model. On this basis, a control design with two degrees of freedom is proposed: a flatness-based feed forward and a passivity-based feedback control technique of interconnection and damping assignment. Further, we deal with acceleration and angular rate measurements to compute all system states used in the feedback loop. Finally, the proposed strategies are validated by measurements from a fast straight line in space and a ball catching scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dwivedy SK, Eberhard P (20006) Dynamic analysis of flexible manipulators, a literature review. Mech Mach Theory 41(7):749–777

    Article  MathSciNet  Google Scholar 

  2. Bremer H (2008) Elastic multibody dynamics: a direct Ritz approach. Springer, Dordrecht

    Book  MATH  Google Scholar 

  3. Calkin M (1996) Lagrangian and Hamiltonian mechanics. World Scientific, Singapore

    MATH  Google Scholar 

  4. Ortega R (1998) Passivity-based control of Euler-Lagrange systems: mechanical, electrical, and electromechanical applications, Communications and control engineering. Springer, London

    Google Scholar 

  5. Nissing D (2000) A vibration damped flexible robot: identification and parameter optimization. Am Control Conf 3:1715–1719, Chicago

    Google Scholar 

  6. Bernzen W (1999) Active vibration control of flexible robots using virtual spring-damper systems. J Intell Robot Syst 24:69–88

    Article  MATH  Google Scholar 

  7. de Wit CC, Bastin G, Siciliano B (eds) (1996) Theory of robot control. Springer, New York

    MATH  Google Scholar 

  8. Wang F, Gao Y (2003) Advanced studies of flexible robotic manipulators: modeling, design, control and applications, Series in intelligent control and intelligent automation. World Scientific, New Jersey

    Book  MATH  Google Scholar 

  9. Dumetz E, Dieulot JY, Barre PJ, Colas F, Delplace T (20006) Control of an industrial robot using acceleration feedback. J Intell Robot Syst 46:111–128

    Article  Google Scholar 

  10. Staudecker M, Schlacher K, Hansl R (2008) Passivity based control and time optimal trajectory planning of a single mast stacker crane. In: Proceedings of the 17th world congress the international federation of automatic control, Seoul, Korea, pp 875–880

    Google Scholar 

  11. Höbarth W (2010) Modellierung, Steuerung und Regelung eines strukturelastischen Leichtbauroboters. PhD thesis, Johannes Kepler Universität Linz, Austria

    Google Scholar 

  12. Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness and defect of non-linear systems: introductory theory and examples. Int J Control 61(6):1327–1361

    Article  MATH  Google Scholar 

  13. De Luca A (1996) Decoupling and feedback linearization of robots with mixed rigid/elastic joints. Proc IEEE Int Conf Robot Autom 1:816–821

    Google Scholar 

  14. van der Schaft AJ (2000) L 2-gain and passivity techniques in nonlinear control (communications and control engineering). Springer, London

    Google Scholar 

  15. Ortega R, van der Schaft AJ, Mareels I, Maschke B (2001) Putting energy back in control. Control Syst IEEE 21(2):18–33

    Article  Google Scholar 

  16. Kugi A (2001) Non-linear control based on physical models. Springer, London

    MATH  Google Scholar 

  17. Gattringer H (2011) Starr-elastische Robotersysteme, Theorie und Anwendungen. Springer, Berlin

    Book  Google Scholar 

  18. Kilian J, Gattringer H, Bremer H (2011) Dynamical modeling of flexible linear robots. In: Proceedings of the ASME 2011 international design engineering technical conferences computers and information in engineering conference IDETC/CIE, DETC2011/MSNDC-47442, Washington DC, USA

    Google Scholar 

  19. Ortega R, Schaft AJ, Maschke B, Escobar G (2002) Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38(4):585–596

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

Support of the present work in the framework of the peer-reviewed Austrian Center of Competence in Mechatronics (ACCM) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Staufer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this paper

Cite this paper

Staufer, P., Gattringer, H. (2013). Passivity-Based Tracking Control of a Flexible Link Robot. In: Gattringer, H., Gerstmayr, J. (eds) Multibody System Dynamics, Robotics and Control. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1289-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1289-2_6

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1288-5

  • Online ISBN: 978-3-7091-1289-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics