Skip to main content

Age-Related Changes to Drosophila m. Male Germline Stem Cells

  • Chapter
Stem Cell Aging: Mechanisms, Consequences, Rejuvenation
  • 1162 Accesses

Abstract

A decline in the regenerative potential of adult tissues is one of the most apparent hallmarks of aging. As tissue regeneration is facilitated by resident stem cells, this age-related decline has been attributed to altered stem cell behavior. The male germline of Drosophila melanogaster has provided a valuable model system for studying the effects of aging on stem cells, due to the presence of both somatic and germline stem cells that reside within the same environment. Stem cells can be easily identified and manipulated genetically to allow for precise tracking of age-related changes in vivo. In this chapter we discuss the age-related decline in spermatogenesis in Drosophila. Specifically, we outline intrinsic changes both to stem cells and to the local microenvironment, known as the stem cell niche. Elucidation of mechanisms underlying these age-related changes has provided new paradigms that have been used to guide work in more complex mammalian stem cell systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ambros V (2011) MicroRNAs and developmental timing. Curr Opin Genet Dev 21:511–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amoyel M, Sanny J, Burel M, Bach EA (2013) Hedgehog is required for CySC self-renewal but does not contribute to the GSC niche in the Drosophila testis. Development 140:56–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyle M, DiNardo S (1995) Specification, migration and assembly of the somatic cells of the Drosophila gonad. Development 121:1815–1825

    CAS  PubMed  Google Scholar 

  • Boyle M, Wong C, Rocha M, Jones DL (2007) Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1:470–478

    Article  CAS  PubMed  Google Scholar 

  • Brawley C, Matunis E (2004) Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 304:1331–1334

    Article  CAS  PubMed  Google Scholar 

  • Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E (2001) An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11:213–221

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Turkel N, Hemati N, Fuller MT, Hunt AJ, Yamashita YM (2008) Centrosome misorientation reduces stem cell division during ageing. Nature 456:599–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764

    Article  CAS  PubMed  Google Scholar 

  • Flaherty MS, Salis P, Evans CJ, Ekas LA, Marouf A, Zavadil J, Banerjee U, Bach EA (2010) Chinmo is a functional effector of the JAK/STAT pathway that regulates eye development, tumor formation, and stem cell self-renewal in Drosophila. Dev Cell 18:556–568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuller MT (1993) Spermatogenesis. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Gönczy P, DiNardo S (1996) The germ line regulates somatic cyst cell proliferation and fate during Drosophila spermatogenesis. Development 122:2437–2447

    PubMed  Google Scholar 

  • Hardy RW, Tokuyasu KT, Lindsley DL, Garavito M (1979) The germinal proliferation center in the testis of Drosophila melanogaster. J Ultrastruct Res 69:180–190

    Article  CAS  PubMed  Google Scholar 

  • Harrison DA, McCoon PE, Binari R, Gilman M, Perrimon N (1998) Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes Dev 12:3252–3263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu HJ, Drummond-Barbosa D (2009) Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc Natl Acad Sci U S A 106:1117–1121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeya T, Galic M, Belawat P, Nairz K, Hafen E (2002) Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 12:1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Inaba M, Yuan H, Salzmann V, Fuller MT, Yamashita YM (2010) E-cadherin is required for centrosome and spindle orientation in Drosophila male germline stem cells. PLoS One 5, e12473

    Article  PubMed Central  PubMed  Google Scholar 

  • Inaba M, Yuan H, Yamashita YM (2011) String (Cdc25) regulates stem cell maintenance, proliferation and aging in Drosophila testis. Development 138:5079–5086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Isobe KI, Cheng Z, Nishio N, Suganya T, Tanaka Y, Ito S (2014) iPSCs, aging and age-related diseases. N Biotechnol 31:411–421

    Article  CAS  PubMed  Google Scholar 

  • Jones DL (2007) Aging and the germ line: where mortality and immortality meet. Stem Cell Rev 3:192–200

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Rando TA (2011) Emerging models and paradigms for stem cell ageing. Nat Cell Biol 13:506–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones DL, Wagers AJ (2008) No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9:11–21

    Article  CAS  PubMed  Google Scholar 

  • Kawase E, Wong MD, Ding BC, Xie T (2004) Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development 131:1365–1375

    Article  CAS  PubMed  Google Scholar 

  • Kiger AA, White-Cooper H, Fuller MT (2000) Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 407:750–754

    Article  CAS  PubMed  Google Scholar 

  • Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294:2542–2545

    Article  CAS  PubMed  Google Scholar 

  • Kramer JM, Davidge JT, Lockyer JM, Staveley BE (2003) Expression of Drosophila FOXO regulates growth and can phenocopy starvation. BMC Dev Biol 3:5

    Article  PubMed Central  PubMed  Google Scholar 

  • LaFever L, Drummond-Barbosa D (2005) Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309:1071–1073

    Article  CAS  PubMed  Google Scholar 

  • Leatherman JL, Dinardo S (2008) Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell Stem Cell 3:44–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leatherman JL, Dinardo S (2010) Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes. Nat Cell Biol 12:806–811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66:4553–4557

    Article  CAS  PubMed  Google Scholar 

  • Lim JG, Fuller MT (2012) Somatic cell lineage is required for differentiation and not maintenance of germline stem cells in Drosophila testes. Proc Natl Acad Sci U S A 109:18477–18481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matunis E, Tran J, Gönczy P, Caldwell K, DiNardo S (1997) punt and schnurri regulate a somatically derived signal that restricts proliferation of committed progenitors in the germline. Development 124:4383–4391

    CAS  PubMed  Google Scholar 

  • McLeod CJ, Wang L, Wong C, Jones DL (2010) Stem cell dynamics in response to nutrient availability. Curr Biol 20:2100–2105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michel M, Raabe I, Kupinski AP, Perez-Palencia R, Bokel C (2011) Local BMP receptor activation at adherens junctions in the Drosophila germline stem cell niche. Nat Commun 2:415

    Article  PubMed  Google Scholar 

  • Michel M, Kupinski AP, Raabe I, Bokel C (2012) Hh signalling is essential for somatic stem cell maintenance in the Drosophila testis niche. Development 139:2663–2669

    Article  CAS  PubMed  Google Scholar 

  • Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611

    Article  CAS  PubMed  Google Scholar 

  • Oatley JM, Brinster RL (2012) The germline stem cell niche unit in mammalian testes. Physiol Rev 92:577–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Partridge L, Gems D, Withers DJ (2005) Sex and death: what is the connection? Cell 120:461–472

    Article  CAS  PubMed  Google Scholar 

  • Puig O, Marr MT, Ruhf ML, Tjian R (2003) Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev 17:2006–2020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343

    Article  CAS  PubMed  Google Scholar 

  • Ryu BY, Orwig KE, Oatley JM, Avarbock MR, Brinster RL (2006) Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells (Dayton, Ohio) 24:1505–1511

    Article  CAS  Google Scholar 

  • Salzmann V, Inaba M, Cheng J, Yamashita YM (2013) Lineage tracing quantification reveals symmetric stem cell division in Drosophila male germline stem cells. Cell Mol Bioeng 6:441–448

    Article  PubMed Central  PubMed  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    CAS  PubMed  Google Scholar 

  • Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheng XR, Matunis E (2011) Live imaging of the Drosophila spermatogonial stem cell niche reveals novel mechanisms regulating germline stem cell output. Development 138:3367–3376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheng XR, Brawley CM, Matunis EL (2009) Dedifferentiating spermatogonia outcompete somatic stem cells for niche occupancy in the Drosophila testis. Cell Stem Cell 5:191–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shim J, Gururaja-Rao S, Banerjee U (2013) Nutritional regulation of stem and progenitor cells in Drosophila. Development 140:4647–4656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shivdasani AA, Ingham PW (2003) Regulation of stem cell maintenance and transit amplifying cell proliferation by tgf-beta signaling in Drosophila spermatogenesis. Curr Biol 13:2065–2072

    Article  CAS  PubMed  Google Scholar 

  • Slaidina M, Delanoue R, Gronke S, Partridge L, Leopold P (2009) A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev Cell 17:874–884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Xie T (2002) DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc Natl Acad Sci U S A 99:14813–14818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Zhu CH, Doan C, Xie T (2002) Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296:1855–1857

    Article  CAS  PubMed  Google Scholar 

  • Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288

    Article  CAS  PubMed  Google Scholar 

  • Toledano H, D’Alterio C, Czech B, Levine E, Jones DL (2012) The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature 485:605–610

    Article  CAS  PubMed  Google Scholar 

  • Tran J, Brenner TJ, DiNardo S (2000) Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature 407:754–757

    Article  CAS  PubMed  Google Scholar 

  • Tran V, Lim C, Xie J, Chen X (2012) Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338:679–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294:2546–2549

    Article  CAS  PubMed  Google Scholar 

  • Ueishi S, Shimizu H, H Inoue Y (2009) Male germline stem cell division and spermatocyte growth require insulin signaling in Drosophila. Cell Struct Funct 34:61–69

    Article  PubMed  Google Scholar 

  • Voog J, D’Alterio C, Jones DL (2008) Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis. Nature 454:1132–1136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voog J, Sandall SL, Hime GR, Resende LP, Loza-Coll M, Aslanian A, Yates JR 3rd, Hunter T, Fuller MT, Jones DL (2014) Escargot restricts niche cell to stem cell conversion in the Drosophila testis. Cell Rep 7:722–734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wallenfang MR, Nayak R, DiNardo S (2006) Dynamics of the male germline stem cell population during aging of Drosophila melanogaster. Aging Cell 5:297–304

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Jones DL (2011) The effects of aging on stem cell behavior in Drosophila. Exp Gerontol 46:340–344

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang L, McLeod CJ, Jones DL (2011) Regulation of adult stem cell behavior by nutrient signaling. Cell Cycle 10:2628–2634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wong C, Jones DL (2012) Efficiency of spermatogonial dedifferentiation during aging. PLoS One 7, e33635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita Y, Jones DL, Fuller MT (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301:1547–1550

    Article  CAS  PubMed  Google Scholar 

  • Yamashita YM, Mahowald AP, Perlin JR, Fuller MT (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang CH, Belawat P, Hafen E, Jan LY, Jan YN (2008) Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319:1679–1683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida S, Sukeno M, Nabeshima Y (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317:1722–1726

    Article  CAS  PubMed  Google Scholar 

  • Yu JY, Reynolds SH, Hatfield SD, Shcherbata HR, Fischer KA, Ward EJ, Long D, Ding Y, Ruohola-Baker H (2009) Dicer-1-dependent Dacapo suppression acts downstream of Insulin receptor in regulating cell division of Drosophila germline stem cells. Development 136:1497–1507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Ebata KT, Robaire B, Nagano MC (2006) Aging of male germ line stem cells in mice. Biol Reprod 74:119–124

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Lv X, Jiang J, Zhang L, Zhao Y (2013) Dual roles of Hh signaling in the regulation of somatic stem cell self-renewal and germline stem cell maintenance in Drosophila testis. Cell Res 23:573–576

    Article  PubMed Central  PubMed  Google Scholar 

  • Zheng Q, Wang Y, Vargas E, DiNardo S (2011) magu is required for germline stem cell self-renewal through BMP signaling in the Drosophila testis. Dev Biol 357:202–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Leanne Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Toledano, H., Jones, D.L. (2015). Age-Related Changes to Drosophila m. Male Germline Stem Cells. In: Geiger, H., Jasper, H., Florian, M. (eds) Stem Cell Aging: Mechanisms, Consequences, Rejuvenation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1232-8_4

Download citation

Publish with us

Policies and ethics