Skip to main content
  • 1333 Accesses

Zusammenfassung

Im folgenden Kapitel werden Störungen der Segmentalreflektorik und des autonomen Nervensystems in Zusammenhang mit Atemwegs- und Lungenerkrankungen erläutert. Der Krankheitsverlauf der COPD ist durch eine progrediente Verschlechterung der Lungenfunktion und eine Abnahme der körperlichen Belastbarkeit und Lebensqualität gekennzeichnet, v. a. durch rezidivierende Exazerbationen und zunehmende Komorbiditäten. Die häufigsten Komorbiditäten bei chronisch-obstruktiven Lungenerkrankungen sind kardiovaskuläre Erkrankungen, Gewichtsverlust, Verlust der fettfreien Masse verbunden mit Muskelatrophie, Osteoporose und Depression. Systemische Erkrankungen gehen häufig zusätzlich mit Störungen des autonomen Nervensystems (sekundäre autonome Dysfunktionen) in Form einer erhöhten neuroendokrinen Aktivierung einher, die möglicherweise für das erhöhte Mortalitätsrisiko dieser Erkrankung mitverantwortlich ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Aalkjaer C, Poston L (1996) Effects of pH on vascular tension: which are the important mechanisms? J Vasc Res 33:347–359

    Article  CAS  PubMed  Google Scholar 

  • Akselrod S, Gordon D, Madwed JB et al (1995) Hemodynamic regulation: investigation by spectral analysis. Am J Physiol 18:867–875

    Google Scholar 

  • Arai Y, Saul JP, Albrecht P (1989) Modulation of cardiac autonomic activity during and immediately after exercise. Am J Phys 256:132–141

    Google Scholar 

  • Bartels MN, Gonzalez JM, Kim W, DeMeersman RE (2000) Cardiac-autonomic modulation in COPD. Chest 118:691–696

    Article  CAS  PubMed  Google Scholar 

  • Bartels MN, Jelic S, Ngai P, Basner RC, DeMeersman RE (2003) High-frequency modulation of heart rate variability during exercise in patients with COPD. Chest 124:863–869

    Article  PubMed  Google Scholar 

  • Berg F v d (2005) Angewandte Physiologie (2) Organsysteme verstehen. Thieme, Stuttgart

    Google Scholar 

  • Bernards JA, Bouman LN (1994) Fysiologie van de mens. Bohn Stafleu van Loghum, Houten Diegem

    Google Scholar 

  • Brown TE, Beightol LA, Koh J, Eckberg DL (1993) Important influence of respiration on human RR interval power spectra is largely ignored. J Appl Physiol 75(5):2310–2318

    Article  CAS  PubMed  Google Scholar 

  • Casadei B, Cochrane S, Johnston J (1995) Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Acta Physiol Scand 153:125–131

    Article  CAS  PubMed  Google Scholar 

  • Claude J (2006) The enigma of Mayer waves: facts and models. Cardiovasc Res 70:12–21

    Article  Google Scholar 

  • Costes F, Roche F, Pichot V et al (2004a) Influence of exercise training on cardiac baroflex sensitivity in patients with COPD. Eur Respir J 23:396–401

    Article  CAS  PubMed  Google Scholar 

  • Costes F, Roche F, Pichot V (2004b) Influence of exercise training on cardiac baroreflex sensitivity in patients with COPD. Eur Respir J 23:396–401

    Article  CAS  PubMed  Google Scholar 

  • Dean E, Frownfelter D (2006) Cardiovascular and pulmonary physical therapy: evidence and praxis. Elsevier, Mosby

    Google Scholar 

  • Ferguson DW, Abboud FM, Mark AL (1995) Relative contribution of aortic and carotid baroreflexes to heart rate control in man during steady state and dynamic increases in arterial pressure. J Clin Investig 76:2265–2274

    Article  Google Scholar 

  • Fietze I (2003) Barorezeptorsensitivität, Herzfrequenzvariabilität und Blutdruckvariabilität bei Patienten mit einem milden, moderaten und schweren obstruktiven Schlafapnoe-Syndrom und bei gesunden Probanden. Habilitationssschrift der Humboldt-Universität Berlin

    Google Scholar 

  • van Gestel AJR, Kohler M, Clarenbach CF (2012) Sympathetic overactivity and cardiovascular disease in patients with chronic obstructive pulmonary disease (COPD). Discov Med 14(79):359–368

    PubMed  Google Scholar 

  • van Gestel AJR, Camen G, Clarenbach CF, Sievi N, Rossi VA, Kohler M (2013a) Quantifying the speed of fluctuations in systolic blood pressure. Hypertens Res. https://doi.org/10.1038/hr.2013.62

  • van Gestel AJR, Clarenbach CF, Stöwhas AC, Rossi VA, Sievi N, Camen G, Kohler M (2013b) The speed of blood pressure fluctuations in patients with Chronic Obstructive Pulmonary Disease. Heart Lung Circulation. https://doi.org/10.1016/j.hlc.2013.08.010

  • Grove JS, Reed DM, Yano K, Hwang LJ (1997) Variability in systolic blood pressure – A risk factor for coronary heart disease? Am J Epidemiol 145:771–776

    Article  CAS  PubMed  Google Scholar 

  • Gugger M, Bachofen H (2001) Dyspnoe Teil 1: Grundlangen und Pathophysiologie. Schweiz Med Forum 6:138–142

    Google Scholar 

  • Haensch CA, Jörg J (2005) Die Analyse der Blutdruckregulation bei autonomer Dysfunktion. Klin Neurophysiol 36:86–97

    Article  Google Scholar 

  • Hanratty CG, Silke B, Riddell JG (1999) Evaluation of the effect on heart rate variability of a beta2-adrenoceptor agonist and antagonist using non-linear scatterplot and sequence methods. Br J Clin Pharmacol 47:157–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidl S, Lehnert M, Criee CP, Hasenfuss G, Andreas S (2001) Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med 164:597–601

    Article  Google Scholar 

  • Heindl S, Dodt C, Krahwinkel M, Hasenfuss G, Andreas S (2001a) Short-term effect of continuous positive airway pressure on muscle sympathetic nerve activity in patients with chronic heart failure. Heart 85:185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heindl S, Lehnert M, Criee CP, Hasenfuss G, Andreas S (2001b) Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med 164:597–601

    Article  CAS  PubMed  Google Scholar 

  • Holle H (2003) Die zeitliche Stabilität der Herzperiodenvariabilität während emotionaler Filme. Diplomarbeit der Universität Trier Fachbereich I – Psychologie, Trier

    Google Scholar 

  • Hölting T (2005) Das Blutdruckverhalten unter Hypoxie bei Patienten mit obstruktiver Schlafapnoe. Inaugural-Dissertation, Fachbereich Humanmedizin der Philipps-Universität Marburg

    Google Scholar 

  • Hopp FA, Seagard JL, Bajic J, Zuperku EJ (1991) Respiratory responses to aortic and carotic chemoreceptor activation in the dog. J Appl Physiol 70:2359–2550

    Article  Google Scholar 

  • Horn A (2003) Diagnostik der Herzfrequenzvariabilität in der Sportmedizin – Rahmenbedingungen und methodische Grundlagen. Dissertation der Fakultät für Sportmedizin der Ruhr-Universität Bochum

    Google Scholar 

  • Jennings G, Nelson L, Nestel P, Esler M, Korner P, Burton D, Bazelmans J (1986) The effects of changes in physical activity on major cardiovascular risk factors, hemodynamics, sympathetic function, and glucose utilization in man: a controlled study of four levels of activity. Circulation 73:30–40

    Article  CAS  PubMed  Google Scholar 

  • Jose AD, Taylor RR (1969) Autonomic blockade by propranolol and atropine to study intrinsic myocardial function in man. J Clin Invest 48:2019–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junichiro H, Fumihiko Y, Akiyoshi O, Seiji M, Takao F (1996) Respiratory sinus arrhythmia, a phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation 94:842–847

    Article  Google Scholar 

  • Kirstein N (2002) Verhalten der Herzfrequenzvariabilität bei Dauerbelastung unterschiedlicher Intensität auf dem Fahrradergometer. Dissertation der Ruhr-Universität Bochum

    Google Scholar 

  • Klinke R, Pape HK, Sibernagl S (2005) Physiologie. Thieme, Stuttgart/New York

    Book  Google Scholar 

  • Lanfranchi PA, Somers VK (2002) Arterial baroreflex function and cardiovascular variability: interactions and implications. Am J Phys Regul Integr Comp Phys 283:815–826

    Google Scholar 

  • Mancia G, Ferrari A, Gregorini L et al (1983) Blood pressure and heart rate variabilities in normotensive and hypertensive human beings. Circ Res 53:96–104

    Article  CAS  PubMed  Google Scholar 

  • Mancia G, Parati G, Pomidossi G, Casadei R, Di Rienzo M, Zanchetti A (1986) Arterial baroreflexes and blood pressure and heart rate variabilities in humans. Hypertension 8:147–153

    Article  CAS  PubMed  Google Scholar 

  • Mancia G, Parati G, Di Rienzo M, Zanchetti A (1997) Blood pressure variability. In: Zanchetti A, Mancia G (Hrsg) Handbook of hypertension, vol 17: Pathophysiology of hypertension. Elsevier Science, Amsterdam, S 117–169

    Google Scholar 

  • Markus KU (2003) Herzschlaglängenfolgen während Taktatmung als Marker der kardiorespiratorischen Innervation. Inaugural-Dissertation des Fachbereichs Humanmedizin der Rheinisch-Westfälischen Technischen Hochschule Aachen

    Google Scholar 

  • Miller MR, Hankinson J, Brusasco V (2005) Series ATS/ERS task force: standardisation of spirometry. Eur Respir J 26:319–338

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Yamamoto Y, Muraoka I (1993) Autonomic control of heart rate during physical exercise and fractal dimension of heart rate variability. J Appl Physiol 74:875–881

    Article  CAS  PubMed  Google Scholar 

  • Oczenski W, Andel H, Werba A (2005) Atmen und Atemhilfen. Thieme, Stuttgart/New York

    Google Scholar 

  • Palatini P, Penzo M, Racioppa A, Zugno E, Guzzardi G, Anaclerio M, Pessina AC (1992) Clinical relevance of nighttime blood pressure and of daytime blood pressure variability. Arch Intern Med 152:1855–1860

    Article  CAS  PubMed  Google Scholar 

  • Parati G, Faini A, Valentini M (2006) Blood pressure variability: its measurement and significance in hypertension. Curr Hypertens Rep 8(3):199–204

    Article  PubMed  Google Scholar 

  • Perini R, Orizio C, Baselli G et al (1990) The influence of exercise intensity on the power spectrum of heart rate variability. Eur J Appl Physiol 61:143–148

    Article  CAS  Google Scholar 

  • Person MG, Lonnqvist PA, Gustafsson LE (1995) Positive end expiratory pressure ventilation elicits increases in endogenously formed nictric oxide as detected in air exhaled by rabbits. Anesthesiology 82:969–974

    Article  Google Scholar 

  • Pinsky MR (2005) Cardiovascular issues in respiratory care. Chest 128:592–597

    Article  Google Scholar 

  • Raupach T, Bahr F, Herrmann P et al (2007) Atemfrequenz-Reduktion senkt die sympathische Aktivität von COPD-Patienten. Pneumologie 61:1055

    Article  Google Scholar 

  • Raupach T, Bahr F, Herrmann P, Luethje L, Heusser K, Hasenfuss G, Bernardi L, Andreas S (2008) Slow breathing reduces sympathoexcitation in COPD. Eur Respir J 32:387–392

    Article  CAS  PubMed  Google Scholar 

  • Rennie KL, Hemingway H, Kumari M, Brunner E, Malik M, Marmot M (2003) Effects of moderate and vigorous physical activity on heart rate variability in a British Study of Civil Servants. Am J Epidemiol 158:135–143

    Article  PubMed  Google Scholar 

  • Rimoldi O, Furlan R, Pagani M (1992) Analysis of neural mechanisms accompanying different intensities of dynamic exercise. Chest 101(suppl):226–230

    Article  Google Scholar 

  • Scalvini S, Porta R, Zanelli E (1999) Effects of oxygen on autonomic nervous system dysfunction in patients with chronic obstructive pulmonary disease. Eur Respir J 13:119–124

    Article  CAS  PubMed  Google Scholar 

  • Schannwell C (2005) Herzerkrankungen des älteren Menschen. DMW 130:693–697

    Article  CAS  Google Scholar 

  • Sin DD, Man SF (2003) Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease. Circulation 11:1514–1519

    Article  Google Scholar 

  • Stein PK, Nelson P, Rottman JN et al (1998a) Heart rate variability reflects severity of COPD in PiZ α1-antitrypsin deficiency. Chest 113:327–333

    Article  CAS  PubMed  Google Scholar 

  • Stein PK, Nelson P, Rottman JN (1998b) Heart rate variability reflects severity of COPD in PiZ α1-antitrypsin deficiency. Chest 113:327–333

    Article  CAS  PubMed  Google Scholar 

  • Stewart AG, Waterhouse JC, Howard P (1991) Cardiovascular autonomic nerve function in patients with hypoxaemic chronic obstructive pulmonary disease. Eur Respir J 4:1207–1214

    Article  CAS  PubMed  Google Scholar 

  • Tatasciore A, Renda G, Zimarino M, Soccio M, Bilo G, Parati G, Schillaci G, De Caterina R (2007) Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension 50(2):325–332

    Article  CAS  PubMed  Google Scholar 

  • Tillmann (2005) Atlas der Anatomie. Springer, Heidelberg

    Google Scholar 

  • Tukek T, Yildiz P, Atilgan D et al (2003) Effect of diurnal variability of heart rate on development of arrhythmia in patients with chronic obstructive pulmonary disease. Int J Cardiol 88:199–206

    Article  PubMed  Google Scholar 

  • Unbehaun A (1999) Die vegetative Kontrolle der Herzfrequenz und ihre Koordination mit dem respiratorischen System untersucht im Schlafen und Wachen innerhalb der Pubertät: Eine zeitreihenanalytische Studie. Dissertation der Medizinischen Fakultät Charité der Humboldt-Universität Berlin

    Google Scholar 

  • Volterrani M, Scalvini S, Mazzuero G (1994) Decreased heart rate variability in patients with chronic obstructive pulmonary disease. Chest 106:1432–1437

    Article  CAS  PubMed  Google Scholar 

  • Watz H, Magnussen H (2006) Komorbiditäten bei COPD. Internist 47:895–900

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Hughson RL, Peterson JC (1991) Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol 71:1136–1142

    Article  CAS  PubMed  Google Scholar 

  • Yasuma F, Hayano J (2004) Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest 125(2):683–690

    Article  PubMed  Google Scholar 

  • Ziemssen T, Prieur S, Reichmann H (2006) Das weite Feld der orthostatischen Dysregulationen. Ärzteblatt 6:247–252

    Google Scholar 

  • Zutphen HCF v, Bernards ATM (1991) Nederlands leerboek der fysische therapie in engere zin. Wetenschappelijke uitgeverij Bunge, Utrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Steier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steier, J. (2022). Segmentalreflektorik und autonomes Nervensystem. In: Steier, J., Rausch-Osthoff, AK. (eds) Physiotherapie bei chronisch-obstruktiven Atemwegs- und Lungenerkrankungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63613-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63613-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63612-1

  • Online ISBN: 978-3-662-63613-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics