Skip to main content

Disorders of Glucose and Monocarboxylate Transporters

  • Chapter
  • First Online:
Inborn Metabolic Diseases

Abstract

To date, five congenital defects of glucose transporters are known. The clinical picture depends on tissue-specific expression and substrate specificity of the affected transporter. SGLT1 deficiency causes intestinal glucose-galactose malabsorption, a condition that presents with severe osmotic diarrhoea and dehydration soon after birth. In renal glucosuria, a harmless renal transport defect characterised by glucosuria at normal blood glucose concentrations as well as the absence of any other signs of renal tubular dysfunction, SGLT2, or very rarely, a membrane-associated protein (MAP17) is affected. In GLUT1 deficiency syndrome, clinical symptoms such as microcephaly, epileptic encephalopathy, and paroxysmal movement disorders are caused by impaired glucose transport at the blood-brain barrier and into astrocytes. A defect in a proton-associated sugar transporter (PAST-A) of neurons can also result in neurologic but also in psychiatric symptoms. Fanconi-Bickel syndrome is the result of a deficiency of GLUT2, an important glucose and galactose carrier of hepatocytes, renal tubular and pancreatic β-cells. Patients typically present with a combination of increased hepatic glycogen storage and generalised renal tubular dysfunction with glucosuria as a pronounced feature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that numbering in MCT and SLC16 nomenclature do not match.

References

  1. Wright EM, Loo DDF, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794

    Article  CAS  PubMed  Google Scholar 

  2. Meeuwisse GW (1970) Glucose-galactose malabsorption: studies on renal glucosuria. Helv Paediat Acta 25:13–24

    CAS  PubMed  Google Scholar 

  3. Tasic V, Slaveska N, Blau N, Santer R (2004) Nephrolithiasis in a child with glucose-galactose malabsorption. Pediatr Nephrol 19:244–246

    Article  PubMed  Google Scholar 

  4. Turk E, Zabel B, Mundlos S et al (1991) Glucose/galactose malabsorption caused by a defect in the Na(+)/glucose cotransporter. Nature 350:354–356

    Article  CAS  PubMed  Google Scholar 

  5. Santer R, Hillebrand G, Steinmann B, Schaub J (2003) Intestinal glucose transport: evidence for a membrane traffic-based pathway in humans. Gastroenterology 124:34–39

    Article  CAS  PubMed  Google Scholar 

  6. Xin B, Wang H (2011) Multiple sequence variations in SLC5A1 gene are associated with glucose-galactose malabsorption in a large cohort of old order Amish. Clin Genet 79:86–91

    Article  CAS  PubMed  Google Scholar 

  7. Elsas LJ, Lambe DW (1973) Familial glucose-galactose malabsorption: remission of glucose intolerance. J Pediatr 83:226–232

    Article  PubMed  Google Scholar 

  8. Brodehl J, Oemar BS, Hoyer PF (1987) Renal glucosuria. Pediatr Nephrol 1:502–508

    Article  CAS  PubMed  Google Scholar 

  9. Calado J, Sznajer Y, Metzger D et al (2008) Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion. Nephrol Dial Transplant 23:3874–3879

    Article  CAS  PubMed  Google Scholar 

  10. Scholl S, Santer R, Ehrich JHH (2004) Long-term outcome of renal glucosuria type 0 – the original patient and his natural history. Nephrol Dial Transplant 19:2394–2396

    Article  Google Scholar 

  11. Magen D, Sprecher E, Zelikovic I, Skorecki K (2005) A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria. Kidney Int 67:34–41

    Article  CAS  PubMed  Google Scholar 

  12. Wortmann SB, van Hove JLK, Derks TGJ et al (2020) Treating neutropenia and neutrophil dysfunction in glycogen storage disease IB with an SGLT2-inhibitor. Blood 136:1033–1043

    Article  PubMed  PubMed Central  Google Scholar 

  13. Santer R, Kinner M, Lassen C et al (2003) Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol 14:2873–2882

    Article  CAS  PubMed  Google Scholar 

  14. Coady MJ, El Tarazi A, Santer R et al (2017) MAP17 is a necessary activator of renal Na+/glucose cotransporter SGLT2. J Am Soc Nephrol 28:85–93

    Article  CAS  PubMed  Google Scholar 

  15. Klepper J, Akman C, Armeno M et al (2020) Glut1 deficiency syndrome (Glut1DS): state of the art in 2020 and recommendations of the international Glut1DS study group. Epilepsia Open 5:354–365

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pearson TS, Pons R, Engelstad K, Kane SA, Goldberg ME, De Vivo DC (2017) Paroxysmal eye-head movements in Glut1 deficiency syndrome. Neurology 88:1666–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suls A, Mullen SA, Weber YG et al (2009) Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 66:415–419

    Article  CAS  PubMed  Google Scholar 

  18. Mullen SA, Marini C, Suls A et al (2011) Glucose transporter 1 deficiency as a treatable cause of myoclonic astatic epilepsy. Arch Neurol 68:1152–1155

    Article  PubMed  Google Scholar 

  19. Pons R, Collins A, Rotstein M, Engelstad K, De Vivo DC (2010) The spectrum of movement disorders in Glut-1 deficiency. Mov Disord 25:275–281

    Article  PubMed  Google Scholar 

  20. Weber YG, Storch A, Wuttke TV et al (2008) GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 118:2157–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang M, Gao G, Rueda CB et al (2017) Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein. Nat Commun 8:14152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Henry M, Kitchens J, Pascual JM, Maldonado RS (2020) GLUT1 deficiency: retinal detrimental effects of gliovascular modulation. Neurol Genet 6:e472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seidner G, Alvarez MG, Yeh JI et al (1998) GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet 18:188–191

    Article  CAS  PubMed  Google Scholar 

  24. Klepper J, Willemsen M, Verrips A et al (2001) Autosomal dominant transmission of GLUT1 deficiency. Hum Mol Genet 10:63–68

    Article  CAS  PubMed  Google Scholar 

  25. Klepper J (2009) Autosomal recessive inheritance of GLUT1 deficiency syndrome. Neuropediatrics 40:207–210

    Article  CAS  PubMed  Google Scholar 

  26. Raja M, Kinne RKH (2020) Mechanistic insights into protein stability and self-aggregation in GLUT1 genetic variants causing GLUT1-deficiency syndrome. J Membr Biol 253:87–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ito Y, Takahashi S, Kagitani-Shimono K et al (2015) Nationwide survey of glucose transporter-1 deficiency syndrome (GLU1DS) in Japan. Brain and Development 37:780–789

    Article  PubMed  Google Scholar 

  28. Mayorga L, Gamboni B, Mampel A, Roqué M (2018) A frame-shift deletion in the PURA gene associates with a new clinical finding: Hypoglycorrhachia. Is GLUT1 a new PURA target? Mol Genet Metab 123:331–336

    Article  CAS  PubMed  Google Scholar 

  29. Leen WG, Wevers RA, Kamsteeg EJ, Scheffer H, Verbeek MM, Willemsen MA (2013) Cerebrospinal fluid analysis in the workup of GLUT1 deficiency syndrome: a systematic review. JAMA Neurol 70:1440–1444

    Article  PubMed  Google Scholar 

  30. Pascual JM, Van Heertum RL, Wang D, Engelstad K, De Vivo DC (2002) Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann Neurol 52:458–464

    Article  CAS  PubMed  Google Scholar 

  31. Gras D, Cousin C, Kappeler C et al (2017) A simple blood test expedites the diagnosis of glucose transporter type 1 deficiency syndrome. Ann Neurol 82:133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klepper J, Garcia-Alvarez M, O’Driscoll KR et al (1999) Erythrocyte 3-O-methyl-D-glucose uptake assay for diagnosis of glucose-transporter-protein syndrome. J Clin Lab Anal 13:116–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ito S, Oguni H, Ito Y, Ishigaki K, Ohinata J, Osawa M (2008) Modified Atkins diet therapy for a case with glucose transporter type 1 deficiency syndrome. Brain and Development 30:226–228

    Article  PubMed  Google Scholar 

  34. Wong HY, Chu TS, Lai JC et al (2005) Sodium valproate inhibits glucose transport and exacerbates Glut1-deficiency in vitro. J Cell Biochem 96:775–785

    Article  CAS  PubMed  Google Scholar 

  35. Leen WG, Taher M, Verbeek MM, Kamsteeg EJ, van de Warrenburg BP, Willemsen MA (2014) GLUT1 deficiency syndrome into adulthood: a follow-up study. J Neurol 261:589–599

    Article  CAS  PubMed  Google Scholar 

  36. Tang M, Park SH, De Vivo DC, Monani UR (2019) Therapeutic strategies for glucose transporter 1 deficiency syndrome. Ann Clin Transl Neurol 6:1923–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Srour M, Shimokawa N, Hamdan FF, Nassif C, Poulin C, Al Gazali L (2017) Dysfunction of the cerebral glucose transporter SLC45A1 in individuals with intellectual disability and epilepsy. Am J Hum Genet 100:824–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vitavska O, Wieczorek H (2013) The SLC45 gene family of putative sugar transporters. Mol Asp Med 34:655–660

    Article  CAS  Google Scholar 

  39. Santer R, Steinmann B, Schaub J (2002) Fanconi-Bickel syndrome – a congenital defect of facilitative glucose transport. Curr Mol Med 2:213–227

    Article  CAS  PubMed  Google Scholar 

  40. Sansbury FH, Flanagan SE, Houghton JA et al (2012) SLC2A2 mutations can cause neonatal diabetes, suggesting GLUT2 may have a role in human insulin secretion. Diabetologia 55:2381–2385

    Article  CAS  PubMed  Google Scholar 

  41. Müller D, Santer R, Krawinkel M, Christiansen B, Schaub J (1997) Fanconi-Bickel syndrome presenting in neonatal screening for galactosaemia. J Inherit Metab Dis 20:607–608

    Article  PubMed  Google Scholar 

  42. Furlan F, Santer R, Vismara E et al (2006) Bilateral nuclear cataracts as the first neonatal sign of Fanconi-Bickel syndrome. J Inherit Metab Dis 29:685

    Article  CAS  PubMed  Google Scholar 

  43. Grünert SC, Schwab KO, Pohl M, Sass JO, Santer R (2012) Fanconi-Bickel syndrome: GLUT2 mutations associated with a mild phenotype. Mol Genet Metab 105:433–437

    Article  PubMed  Google Scholar 

  44. Santer R, Schneppenheim R, Dombrowski A et al (1997) Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet 17:324–326

    Article  CAS  PubMed  Google Scholar 

  45. van de Bunt M, Gloyn AL (2012) A tale of two glucose transporters: how GLUT2 re-emerged as a contender for glucose transport into the human beta cell. Diabetologia 55:2312–2315

    Article  PubMed  Google Scholar 

  46. Santer R, Groth S, Kinner M et al (2002) The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome. Hum Genet 110:21–29

    Article  CAS  PubMed  Google Scholar 

  47. Paesold-Burda P, Baumgartner MR, Santer R, Bosshard NU, Steinmann B (2007) Elevated serum biotinidase activity in hepatic glycogen storage disorders – a convenient biomarker. J Inherit Metab Dis 30:896–902

    Article  CAS  PubMed  Google Scholar 

  48. Enogieru OJ, Ung PMU, Yee SW, Schlessinger A, Giacomini KM (2019) Functional and structural analysis of rare SLC2A2 variants associated with Fanconi-Bickel syndrome and metabolic traits. Hum Mutat 40:983–995

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee PJ, Van’t Hoff WG, Leonard JV (1995) Catch-up growth in Fanconi-Bickel syndrome with uncooked cornstarch. J Inherit Metab Dis 18:153–156

    Article  CAS  PubMed  Google Scholar 

  50. Pennisi A, Maranda B, Benoist JF et al (2020) Nocturnal enteral nutrition is therapeutic for growth failure in Fanconi-Bickel syndrome. J Inherit Metab Dis 43:540–548

    Article  CAS  PubMed  Google Scholar 

  51. Pogoriler J, O'Neill AF, Voss SD, Shamberger RC, Perez-Atayde AR (2018) Hepatocellular carcinoma in Fanconi-Bickel syndrome. Pediatr Dev Pathol 21:84–90

    Article  PubMed  Google Scholar 

  52. Vitart V, Rudan I, Hayward C et al (2008) SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 40:437–442

    Article  CAS  PubMed  Google Scholar 

  53. Lee YC, Huang HY, Chang CJ, Cheng CH, Chen YT (2010) Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome. Hum Molec Genet 19:3721–3733

    Article  CAS  PubMed  Google Scholar 

  54. Halestrap AP (2013) The SLC16 gene family—structure, role and regulation in health and disease. Mol Asp Med 34:337–349

    Article  CAS  Google Scholar 

  55. Felmlee MA, Jones RS, Rodriguez-Cruz V, Follman KE, Morris ME (2020) Monocarboxylate transporters (SLC16): function, regulation, and role in health and disease. Pharmacol Rev 72:466–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fisel P, Schaeffeler E, Schwab M (2018) Clinical and functional relevance of the monocarboxylate transporter family in disease pathophysiology and drug therapy. Clin Transl Sci 11:352–364

    Article  PubMed  PubMed Central  Google Scholar 

  57. van Hasselt PM, Ferdinandusse S, Monroe GR et al (2014) Monocarboxylate transporter 1 deficiency and ketone utilization. N Engl J Med 371:1900–1907

    Article  PubMed  Google Scholar 

  58. Fishbein WN (1986) Lactate transporter defect: a new disease of muscle. Science 234:1254–1256

    Article  CAS  PubMed  Google Scholar 

  59. Lee Y, Morrison BM, Li Y et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sarret C, Oliver Petit I, Tonduti D (1993-2020) Allan-Herndon-Dudley syndrome. 2010 mar 9 [updated 2020 Jan 16]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews [internet]. University of Washington, Seattle, Seattle (WA)

    Google Scholar 

  61. Groeneweg S, van Geest FS, Abaci A et al (2020) Disease characteristics of MCT8 deficiency: an international, retrospective, multicentre cohort study. Lancet Diabetes Endocrinol 8:594–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Friesema ECH, Grueters A, Biebermann H et al (2004) Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364:1435–1437

    Article  CAS  PubMed  Google Scholar 

  63. Refetoff S, Pappa T, Williams MK et al. (2020) Prenatal treatment of thyroid hormone cell membrane transport defect caused by MCT8 gene mutation. Thyroid, online ahead of print. https://doi.org/10.1089/thy.2020.0306

  64. Groeneweg S, Peeters RP, Moran C et al (2019) Effectiveness and safety of the tri-iodothyronine analogue Triac in children and adults with MCT8 deficiency: an international, single-arm, open-label, phase 2 trial. Lancet Diabetes Endocrinol 7:695–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kloeckener-Gruissem B, Vandekerckhove K, Nurnberg G et al (2008) Mutation of solute carrier SLC16A12 associates with a syndrome combining juvenile cataract with microcornea and renal glucosuria. Am J Hum Genet 82:772–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stäubli A, Capatina N, Fuhrer Y et al (2017) Abnormal creatine transport of mutations in monocarboxylate transporter 12 (MCT12) found in patients with age-related cataract can be partially rescued by exogenous chaperone CD147. Hum Mol Genet 26:4203–4214

    Article  PubMed  Google Scholar 

  67. Dhayat N, Simonin A, Anderegg M et al (2016) Mutation in the monocarboxylate transporter 12 gene affects guanidinoacetate excretion but does not cause glucosuria. J Am Soc Nephrol 27:1426–1436

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Santer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santer, R., Klepper, J. (2022). Disorders of Glucose and Monocarboxylate Transporters. In: Saudubray, JM., Baumgartner, M.R., García-Cazorla, Á., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63123-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63123-2_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63122-5

  • Online ISBN: 978-3-662-63123-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics