Skip to main content

Disorders of Tyrosine Metabolism

  • Chapter
  • First Online:
Inborn Metabolic Diseases

Abstract

Six inherited disorders of tyrosine metabolism are known. Hereditary tyrosinaemia type I is characterised by progressive liver disease and renal tubular dysfunction with rickets. Hereditary tyrosinaemia type II (Richner-Hanhart syndrome) presents with keratitis and blistering lesions of the palms and soles and neurological complications. Tyrosinaemia type III may be asymptomatic or associated with mental retardation. Hawkinsinuria may be asymptomatic or present with failure to thrive and metabolic acidosis in infancy. In alkaptonuria, symptoms of osteoarthritis usually appear in adulthood. Maleylacetoacetate isomerase deficiency is associated with asymptomatic mild hypersuccinylacetonaemia. Other inborn errors of tyrosine metabolism include oculocutaneous albinism caused by a deficiency of melanocyte-specific tyrosinase, converting tyrosine into DOPA-quinone; deficiency of tyrosine hydroxylase, the first enzyme in the synthesis of dopamine from tyrosine; and deficiency of aromatic L-amino acid decarboxylase, which also affects tryptophan metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spronsen VFJ, Thomasse Y, Smit GP et al (1994) Hereditary tyrosinemia type I: a new clinical classification with difference in prognosis on dietary treatment. Hepatology 20:1187–1191

    Article  PubMed  Google Scholar 

  2. Weinberg AG, Mize CE, Worthen HG (1976) The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr 88:434–438

    Article  CAS  PubMed  Google Scholar 

  3. Forget S, Patriquin HB, Dubois J et al (1999) The kidney in children with tyrosinemia: sonographic, CT and biochemical findings. Pediatr Radiol 29:104–108

    Article  CAS  PubMed  Google Scholar 

  4. Santra S, Preece MA, Hulton SA, McKiernan PJ (2008) Renal tubular function in children with tyrosinaemia type I treated with nitisinone. J Inherit Metab Dis 31:399–402

    Article  CAS  PubMed  Google Scholar 

  5. Mitchell G, Larochelle J, Lambert M et al (1990) Neurologic crises in hereditary tyrosinemia. N Engl J Med 322:432–437

    Article  CAS  PubMed  Google Scholar 

  6. De Laet C, Terrones MV, Jaeken J et al (2011) Neuropsychological outcome of NTBC-treated patients with tyrosinaemia type 1. Dev Med Child Neurol 53:962–964

    Article  PubMed  Google Scholar 

  7. Bendadi F, de Koning TJ, Visser G et al (2014) Impaired cognitive functioning in patients with tyrosinemia type I receiving nitisinone. J Pediatr 164:398–401

    Article  PubMed  Google Scholar 

  8. Arora N, Stumper O, Wright J et al (2006) Cardiomyopathy in tyrosinaemia type I is common but usually benign. J Inherit Metab Dis 29:54–57

    Article  CAS  PubMed  Google Scholar 

  9. Baumann U, Preece MA, Green A et al (2005) Hyperinsulinism in tyrosinaemia type I. J Inherit Metab Dis 28:131–135

    Article  CAS  PubMed  Google Scholar 

  10. Jorquera R, Tanguay RM (1997) The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. Biochem Biophys Res Commun 232:42–48

    Article  CAS  PubMed  Google Scholar 

  11. Bliksrud YT, Ellingsen A, Bjørås M (2013) Fumarylacetoacetate inhibits the initial step of the base excision repair pathway: implication for the pathogenesis of tyrosinemia type I. J Inherit Metab Dis 36:773–778

    Article  CAS  PubMed  Google Scholar 

  12. Endo F, Sun MS (2002) Tyrosinaemia type I and apoptosis of hepatocytes and renal tubular cells. J Inherit Metab Dis 25:227–234

    Article  CAS  PubMed  Google Scholar 

  13. Tanguay RM, Jorquera R, Poudrier J, St Louis M (1996) Tyrosine and its catabolites: from disease to cancer. Acta Biochim Pol 43:209–216

    Article  CAS  PubMed  Google Scholar 

  14. Demers SI, Russo P, Lettre F, Tanguay RM (2003) Frequent mutation reversion inversely correlates with clinical severity in a genetic liver disease, hereditary tyrosinemia. Hum Pathol 34:1313–1320

    Article  CAS  PubMed  Google Scholar 

  15. Roth KS, Carter BE, Higgins ES (1991) Succinylacetone effects on renal tubular phosphate metabolism: a model for experimental renal Fanconi syndrome. Proc Soc Exp Biol Med 196:428–431

    Article  CAS  PubMed  Google Scholar 

  16. Giger U, Meyer UA (1983) Effect of succinylacetone on heme and cytochrome P450 synthesis in hepatocyte culture. FEBS Lett 153:335–338

    Article  CAS  PubMed  Google Scholar 

  17. Tschudy DP, Hess A, Frykholm BC, Blease BM (1982) Immunosuppressive activity of succinylacetone. J Lab Clin Med 99:526–532

    CAS  PubMed  Google Scholar 

  18. Larochelle J, Alvarez F, Bussières JF et al (2014) Effect of nitisinone (NTBC) treatment on the clinical course of hepatorenal tyrosinemia in Québec. Mol Genet Metab 107:49–54

    Article  Google Scholar 

  19. Mayorandan S, Meyer U, Gokcay G et al (2014) Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice. Orphanet J Rare Dis 9:107

    Article  PubMed  PubMed Central  Google Scholar 

  20. De Jesús VR, Adam BW, Mandel D, Cuthbert CD, Matern D (2014) Succinylacetone as primary marker to detect tyrosinemia type I in newborns and its measurement by newborn screening programs. Mol Genet Metab 113:67–75

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stinton C, Geppert J, Freeman K et al (2017) Newborn screening for tyrosinemia type 1 using succinylacetone – a systematic review of test accuracy. Orphanet J Rare Dis 12:48

    Article  PubMed  PubMed Central  Google Scholar 

  22. Angileri F, Bergeron A, Morrow G et al (2015) Geographical and ethnic distribution of mutations of the fumarylacetoacetate hydrolase gene in hereditary tyrosinemia type 1. JIMD Rep 19:43–58

    Article  PubMed  PubMed Central  Google Scholar 

  23. Poudrier J, Lettre F, St Louis M, Tanguay RM (1999) Genotyping of a case of tyrosinaemia type I with normal level of succinylacetone in amniotic fluid. Prenat Diagn 19:61–63

    Article  CAS  PubMed  Google Scholar 

  24. Stenson PD, Mort M, Ball EV et al (2014) The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 133:1–9

    Article  CAS  PubMed  Google Scholar 

  25. Cassiman D, Zeevaert R, Holme E, Kvittingen EA, Jaeken J (2009) A novel mutation causing mild, atypical fumarylacetoacetase deficiency (Tyrosinemia type I): a case report. Orphanet J Rare Dis 4:28

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rootwelt H, Brodtkorb E, Kvittingen EA (1994) Identification of a frequent pseudodeficiency mutation in the fumarylacetoacetase gene, with implications for diagnosis of tyrosinemia type I. Am J Hum Genet 55:1122–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang H, Al-Hertani W, Cyr D et al (2017) Hypersuccinylacetonaemia and normal liver function in maleyacetoacetate isomerase deficiency. J Med Genet 54(4):241–247

    Article  CAS  PubMed  Google Scholar 

  28. de Laet C, Dionisi-Vici C, Leonard JV et al (2013) Recommendations for the management of tyrosinaemia type 1. Orphanet J Rare Dis 8:8

    Article  PubMed  PubMed Central  Google Scholar 

  29. Holme E, Lindstedt ES (2000) Nontransplant treatment of tyrosinemia. Clin Liver Dis 4:805–814

    Article  CAS  PubMed  Google Scholar 

  30. Hall MG, Wilks MF, Provan WM et al (2001) Pharmacokinetics and pharmacodynamics of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) and mesotrione, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteers. Br J Clin Pharmacol 52:169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mohan N, McKiernan P, Preece MA et al (1999) Indications and outcome of liver transplantation in tyrosinaemia type 1. Eur J Pediatr 158:S49–S54

    Article  PubMed  Google Scholar 

  32. Laine J, Salo MK, Krogerus L et al (1995) The nephropathy of type I tyrosinemia after liver transplantation. Pediatr Res 37:640–645

    Article  CAS  PubMed  Google Scholar 

  33. Bartlett DC, Lloyd C, McKiernan PJ, Newsome PN (2014) Early nitisinone treatment reduces the need for liver transplantation in children with tyrosinaemia type 1 and improves post-transplant renal function. J Inherit Metab Dis 37:745–752

    Article  CAS  PubMed  Google Scholar 

  34. Kassel R, Sprietsma L, Rudnick DA (2015) Pregnancy in an NTBC-treated patient with hereditary tyrosinemia type I. J Pediatr Gastroenterol Nutr 60:e5–e7

    Article  PubMed  Google Scholar 

  35. Vanclooster A, Devlieger RW et al (2012) Pregnancy during nitisinone treatment for tyrosinaemia type I: first human experience. JIMD Rep 5:27–33

    Article  CAS  PubMed  Google Scholar 

  36. Rabinowitz LG, Williams LR, Anderson CE et al (1995) Painful keratoderma and photophobia: hallmarks of tyrosinemia type II. J Pediatr 126:266–269

    Article  CAS  PubMed  Google Scholar 

  37. Duchatelet S, Hovnanian A (2015) Olmsted syndrome: clinical, molecular and therapeutic aspects. Orphanet J Rare Dis 10:33

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fois A, Borgogni P, Cioni M et al (1986) Presentation of the data of the Italian registry for oculocutaneoustyrosinaemia. J Inherit Metab Dis 9:262–264

    Article  Google Scholar 

  39. Bohnert A, Anton-Lamprecht I (1982) Richner-Hanhart syndrome: ultrastructural abnormalities of epidermal keratinization indicating a causal relationship to high intracellular tyrosine levels. J Invest Dermatol 72:68–74

    Article  Google Scholar 

  40. Teodorak BP, Scaini G, Cavalho-Silva M et al (2017) Antioxidants reverse the changes in energy metabolism of rat brain after chronic administration of L-tyrosine. Metab Brain Dis 32:557–564

    Article  CAS  PubMed  Google Scholar 

  41. Meissner T, Betz RC, Pasternack SM et al (2008) Richner-Hanhart syndrome detected by expanded newborn screening. Pediatr Dermatol 25:378

    Article  PubMed  Google Scholar 

  42. Barr DG, Kirk JM, Laing SC (1991) Outcome in tyrosinaemia type II. Arch Dis Child 66:1249–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cerone R, Fantasia AR, Castellano E et al (2002) Pregnancy and tyrosinaemia type II. J Inherit Metab Dis 25:317–318

    Article  CAS  PubMed  Google Scholar 

  44. Francis DE, Kirby DM, Thompson GN (1992) Maternal Tyrosinaemia II: management and successful outcome. Eur J Pediatr 151(3):191–196

    Article  Google Scholar 

  45. Barroso F, Correia J, Bandeira A et al (2020) Tyrosinemia type III: a case report of siblings and literature review. Rev Paul Pediatr 38:e2018158

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rice DN, Houston IB, Lyon IC et al (1998) Transient neonatal tyrosinaemia. J Inherit Metab Dis 12:13–22

    Article  Google Scholar 

  47. Mamunes P, Prince PE, Thornton NH et al (1976) Intellectual deficits after transient tyrosinemia in the term neonate. Pediatrics 57:675–680

    Article  CAS  PubMed  Google Scholar 

  48. Phornphutkul C, Introne WJ, Perry MB et al (2002) Natural history of alkaptonuria. N Engl J Med 347:2111–2121

    Article  CAS  PubMed  Google Scholar 

  49. Wu K, Bauer E, Myung G, Fang MA (2019) Musculoskeletal features of alkaptonuria: a case report and literature review. Eur J Rheumatol 6(2):98–101

    Article  PubMed  Google Scholar 

  50. Zatkova A, Ranganath L, Kadasi L (2020) Alkaptonuria: current perspectives. Appl Clin Genet 13:37–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Braconi D, Milucci L, Bernadini G, Santucci A (2015) Oxidative stress and mechanisms of ochronosis in alkaptonuria. Free Radic Biol Med 88(Pt A):70–80

    Article  CAS  PubMed  Google Scholar 

  52. Brunetti G, Tummolo A, D’Amato G et al (2018) Mechanisms of enhanced osteoclastogenesis in alkaptonuria. Am J Pathol 188(4):1059–1068

    Article  CAS  PubMed  Google Scholar 

  53. Introne WJ, Perry MB, Troendle J (2011) A 3-year randomized therapeutic trial of nitisinone in alkaptonuria. Mol Genet Metab 103(4):307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ranganath LR, Khedr M, Milan AM et al (2018) Nitisinone arrests ochronosis and decreases rate of progression of Alkaptonuria: evaluation of the effect of nitisinone in the United Kingdom national Alkaptonuria Centre. Mol Genet Metab 125(1-2):127–134

    Article  CAS  PubMed  Google Scholar 

  55. Davison AS, Harrold JA, Hughes G et al (2018) Clinical and biochemical assessment of depressive symptoms in patients with alkaptonuria before and after two years of treatment with nitisinone. Mol Genet Metab 125(1-2):135–143

    Article  CAS  PubMed  Google Scholar 

  56. Sloboda N, Wiemann A, Merten M et al (2019) Efficacy of low dose nitisinone in the management of alkaptonuria. Mol Genet Metab 127(3):184–190

    Article  CAS  PubMed  Google Scholar 

  57. Item CB, Mihalek I, Lichtarge O, Jalan A et al (2007) Manifestation of hawkinsinuria in a patient compound heterozygous for hawkinsinuria and tyrosinemia III. Mol Genet Metab 91:379–383

    Article  CAS  PubMed  Google Scholar 

  58. Gomez-Ospina N, Scott AI, Oh GJ (2016) Expanding the phenotype of hawkinsinuria: new insights from response to N-acetyl-L-cysteine. J Inherit Metab Dis 39(6):821–829

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Chakrapani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakrapani, A., Gissen, P., McKiernan, P. (2022). Disorders of Tyrosine Metabolism. In: Saudubray, JM., Baumgartner, M.R., García-Cazorla, Á., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63123-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63123-2_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63122-5

  • Online ISBN: 978-3-662-63123-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics