Skip to main content

Management of Knee Injuries in Adolescent Basketball Players

  • Chapter
  • First Online:
Basketball Sports Medicine and Science

Abstract

Basketball is one of the most common sports in the world and in the USA, and it is thought to be the most popular team sport for adolescent boys and girls with nearly a million athletes being registered during a given school year. With such a high participation rate, it is not surprising that basketball also represents the most frequent cause of sports-related emergency department visits in pediatric and adolescent patients. Second only to ankle injuries, knee injuries are commonly reported and more likely to be acute and/or severe. However, the diagnoses of “sprain” or “strain” continue to be the most common injuries in basketball with the majority of injuries being minor and time away from sport less than a week. Knee pain also represents one of the most common musculoskeletal complaints in pediatric and adolescent populations in general, with about half of physically active youth having some degree of knee pain each year.

Although adolescent basketball players can sustain many of the same knee injuries as adults, the presence of open physes or growth plates, relative strength of ligamentous and soft tissues comparted to growth plates, and ongoing skeletal and neuromuscular maturation have implications on the type and severity of knee injuries sustained. Additionally, children and adolescents often have inadequately developed coordination or motor skills which increase risk of injury. Extrinsic factors such as poor training techniques, inadequate conditioning, poor coaching, or limited supervision may also increase risk of injury in these young athletes.

This chapter aims to outline the most common traumatic and overuse knee injuries that the adolescent basketball player may sustain, with attention paid to diagnosis, treatment, potential complications, return to sport criteria, and expectations following injury. Although by no means exhaustive, it should provide a framework for the evaluation and treatment of these increasingly common injuries and aid in the safe return to sport for the injured adolescent athlete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siow HM, Cameron DB, Ganley TJ. Acute knee injuries in skeletally immature athletes. Phys Med Rehabil Clin N Am. 2008;19(2):319–45. https://doi.org/10.1016/j.pmr.2007.11.005.

    Article  PubMed  Google Scholar 

  2. Borowski LA, Yard EE, Fields SK, Comstock RD. The epidemiology of US high school basketball injuries, 2005–2007. Am J Sports Med. 2017;36(12):2328–35. https://doi.org/10.1177/0363546508322893.

    Article  Google Scholar 

  3. Stanley LE, Kerr ZY, Dompier TP, Padua DA. Sex differences in the incidence of anterior cruciate ligament, medial collateral ligament, and meniscal injuries in collegiate and high school sports. Am J Sports Med. 2016;44(6):1565–72. https://doi.org/10.1177/0363546516630927.

    Article  PubMed  Google Scholar 

  4. Shea KG, Grimm NL, Ewing CK, Aoki SK. Youth sports anterior cruciate ligament and knee injury epidemiology: who is getting injured? In what sports? When? Clin Sports Med. 2011;30(4):691–706. https://doi.org/10.1016/j.csm.2011.07.004.

    Article  PubMed  Google Scholar 

  5. Leppänen M, Pasanen K, Kujala UM, et al. Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am J Sports Med. 2016;45(2):386–93. https://doi.org/10.1177/0363546516665810.

    Article  PubMed  Google Scholar 

  6. Leppänen M, Pasanen K, Kulmala JP, et al. Knee control and jump-landing technique in young basketball and floorball players. Int J Sports Med. 2016;37(04):334–8. https://doi.org/10.1055/s-0035-1565104.

    Article  PubMed  Google Scholar 

  7. Agel J, Arendt EA, Bershadsky B. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am J Sports Med. 2005;33:524–30.

    Article  Google Scholar 

  8. Kernozek TW, Torry MR, Van Hoof H, Cowley H, Tanner S. Gender differences in frontal and sagittal plane biomechanics during drop landings. Med Sci Sports Exerc. 2005;37:1003–12.

    PubMed  Google Scholar 

  9. Stanitski CL, Harvell JC, Fu F. Observations on acute knee hemarthrosis in children and adolescents. J Pediatr Orthop. 1993;13:506–10.

    Article  CAS  Google Scholar 

  10. Larsen MW, Garrett WE, Delee JC, Moorman CT. Surgical management of anterior cruciate ligament injuries in patients with open physes. J Am Acad Orthop Surg. 2006;14(13):736–44.

    Article  Google Scholar 

  11. Gurtler RA, Stine R, Torg JS. Lachman test evaluated. Quantification of a clinical observation. Clin Orthop Relat Res. 1987;216:141–50.

    Article  Google Scholar 

  12. Fetto JF, Marshall JL. Injury to the anterior cruciate ligament producing the pivot-shift sign. J Bone Joint Surg. 1979;61(5):710–4.

    Article  CAS  Google Scholar 

  13. Galway HR, MacIntosh DL. The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res. 1980;147:45–50.

    Article  Google Scholar 

  14. Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist. 2nd ed. Palo Alto, CA: Stanford University Press; 1959.

    Google Scholar 

  15. Heyworth BE, Osei DA, Fabricant PD, et al. The shorthand bone age assessment: a simpler alternative to current methods. J Pediatr Orthop. 2013;33(5):569–74. https://doi.org/10.1097/BPO.0b013e318293e5f2.

    Article  PubMed  Google Scholar 

  16. Dingel A, Aoyama J, Ganley T, Shea K. Pediatric ACL tears: natural history. J Pediatr Orthop. 2019;39(Issue 6, Suppl 1):S47–9. https://doi.org/10.1097/BPO.0000000000001367.

    Article  PubMed  Google Scholar 

  17. Aichroth PM, Patel DV, Zorrilla P. The natural history and treatment of rupture of the anterior cruciate ligament in children and adolescents. A prospective review. J Bone Joint Surg Br. 2002;84(1):38–41. https://doi.org/10.1302/0301-620x.84b1.11773.

    Article  PubMed  CAS  Google Scholar 

  18. Kaeding CC, Aros B, Pedroza A, et al. Allograft versus autograft anterior cruciate ligament reconstruction: predictors of failure from a MOON prospective longitudinal cohort. Sports Health. 2011;3(1):73–81. https://doi.org/10.1177/1941738110386185.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Engelman GH, Carry PM, Hitt KG, Polousky JD, Vidal AF. Comparison of allograft versus autograft anterior cruciate ligament reconstruction graft survival in an active adolescent cohort. Am J Sports Med. 2014;42(10):2311–8. https://doi.org/10.1177/0363546514541935.

    Article  PubMed  Google Scholar 

  20. Faunø P, Rahr-Wagner L, Lind M. Risk for revision after anterior cruciate ligament reconstruction is higher among adolescents: results from the Danish Registry of Knee Ligament Reconstruction. Orthop J Sports Med. 2014;2(10):2325967114552405. https://doi.org/10.1177/2325967114552405.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Persson A, Fjeldsgaard K, Gjertsen J-E, et al. Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian Cruciate Ligament Registry, 2004–2012. Am J Sports Med. 2014;42(2):285–91. https://doi.org/10.1177/0363546513511419.

    Article  PubMed  Google Scholar 

  22. Milewski MD, Beck NA, Lawrence JT, Ganley TJ. Anterior cruciate ligament reconstruction in the young athlete: a treatment algorithm for the skeletally immature. Clin Sports Med. 2011;30(4):801–10. https://doi.org/10.1016/j.csm.2011.08.001.

    Article  PubMed  Google Scholar 

  23. CAMPBELL CJ, GRISOLIA A, ZANCONATO G. The effects produced in the cartilaginous epiphyseal plate of immature dogs by experimental surgical traumata. J Bone Joint Surg. 1959;41-A:1221–42.

    Article  CAS  Google Scholar 

  24. Shifflett GD, Green DW, Widmann RF, Marx RG. Growth arrest following ACL reconstruction with hamstring autograft in skeletally immature patients: a review of 4 cases. J Pediatr Orthop. 2016;36(4):355–61. https://doi.org/10.1097/BPO.0000000000000466.

    Article  PubMed  Google Scholar 

  25. Chotel F, Henry J, Seil R, Chouteau J, Moyen B, Bérard J. Growth disturbances without growth arrest after ACL reconstruction in children. Knee Surg Sports Traumatol Arthrosc. 2010;18(11):1496–500. https://doi.org/10.1007/s00167-010-1069-5.

    Article  PubMed  Google Scholar 

  26. Kocher MS, Saxon HS, Hovis WD, Hawkins RJ. Management and complications of anterior cruciate ligament injuries in skeletally immature patients: survey of the Herodicus Society and The ACL Study Group. J Pediatr Orthop. 2002;22(4):452–7.

    PubMed  Google Scholar 

  27. Shea KG, Apel PJ, Pfeiffer RP, Traughber PD. The anatomy of the proximal tibia in pediatric and adolescent patients: implications for ACL reconstruction and prevention of physeal arrest. Knee Surg Sports Traumatol Arthrosc. 2007;15(4):320–7. https://doi.org/10.1007/s00167-006-0171-1.

    Article  PubMed  Google Scholar 

  28. Shea KG, Grimm NL, Belzer JS. Volumetric injury of the distal femoral physis during double-bundle ACL reconstruction in children: a three-dimensional study with use of magnetic resonance imaging. J Bone Joint Surg Am. 2011;93(11):1033–8. https://doi.org/10.2106/JBJS.J.01047.

    Article  PubMed  Google Scholar 

  29. Ellison AE. Distal iliotibial-band transfer for anterolateral rotatory instability of the knee. J Bone Joint Surg. 1979;61(3):330–7.

    Article  CAS  Google Scholar 

  30. Kocher MS, Garg S, Micheli LJ. Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. J Bone Joint Surg. 2005;87(11):2371–9. https://doi.org/10.2106/JBJS.D.02802.

    Article  PubMed  Google Scholar 

  31. McCarthy MM, Graziano J, Green DW, Cordasco FA. All-epiphyseal, all-inside anterior cruciate ligament reconstruction technique for skeletally immature patients. Arthrosc Tech. 2012;1(2):e231–9. https://doi.org/10.1016/j.eats.2012.08.005.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cordasco FA, Mayer SW, Green DW. All-inside, all-epiphyseal anterior cruciate ligament reconstruction in skeletally immature athletes: return to sport, incidence of second surgery, and 2-year clinical outcomes. Am J Sports Med. 2017;45(4):856–63. https://doi.org/10.1177/0363546516677723.

    Article  PubMed  Google Scholar 

  33. Lawrence JTR, Bowers AL, Belding J, Cody SR, Ganley TJ. All-epiphyseal anterior cruciate ligament reconstruction in skeletally immature patients. Clin Orthop Relat Res. 2010;468(7):1971–7. https://doi.org/10.1007/s11999-010-1255-2.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kocher MS, Smith JT, Zoric BJ, Lee B, Micheli LJ. Transphyseal anterior cruciate ligament reconstruction in skeletally immature pubescent adolescents. J Bone Joint Surg Am. 2007;89(12):2632–9. https://doi.org/10.2106/JBJS.F.01560.

    Article  PubMed  Google Scholar 

  35. Pierce TP, Issa K, Festa A, Scillia AJ, McInerney VK. Pediatric anterior cruciate ligament reconstruction: a systematic review of transphyseal versus physeal-sparing techniques. Am J Sports Med. 2017;45(2):488–94. https://doi.org/10.1177/0363546516638079.

    Article  PubMed  Google Scholar 

  36. Domzalski M, Karauda A, Grzegorzewski A, Lebiedzinski R, Zabierek S, Synder M. Anterior cruciate ligament reconstruction using the transphyseal technique in prepubescent athletes: midterm, prospective evaluation of results. Arthroscopy. 2016;32(6):1141–6. https://doi.org/10.1016/j.arthro.2015.11.045.

    Article  PubMed  Google Scholar 

  37. Cruz AI, Lakomkin N, Fabricant PD, Lawrence JTR. Transphyseal ACL reconstruction in skeletally immature patients: does independent femoral tunnel drilling place the physis at greater risk compared with transtibial drilling? Orthop J Sports Med. 2016;4(6):2325967116650432. https://doi.org/10.1177/2325967116650432.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Trivedi V, Mishra P, Verma D. Pediatric ACL injuries: a review of current concepts. Open Orthop J. 2017;11(1):378–88. https://doi.org/10.2174/1874325001711010378.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Edmonds EW, Fornari ED, Dashe J, Roocroft JH, King MM, Pennock AT. Results of displaced pediatric tibial spine fractures: a comparison between open, arthroscopic, and closed management. J Pediatr Orthop. 2015;35(7):651–6.

    Article  Google Scholar 

  40. Strauss EJ, Kaplan DJ, Weinberg ME, Egol J, Jazrawi LM. Arthroscopic management of tibial spine avulsion fractures: principles and techniques. J Am Acad Orthop Surg. 2018;26(10):360–7. https://doi.org/10.5435/JAAOS-D-16-00117.

    Article  PubMed  Google Scholar 

  41. Ishibashi Y, Rudy TW, Livesay GA, Stone JD, Fu FH, Woo SL. The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy. 1997;13(2):177–82.

    Article  CAS  Google Scholar 

  42. Meyers MH, McKeever FM. Fracture of the intercondylar eminence of the tibia. J Bone Joint Surg. 1970;52(8):1677–84.

    Article  CAS  Google Scholar 

  43. Zaricznyj B. Avulsion fracture of the tibial eminence: treatment by open reduction and pinning. J Bone Joint Surg Am. 1977;59(8):1111–4.

    Article  CAS  Google Scholar 

  44. Kocher MS, Micheli LJ, Gerbino P, Hresko MT. Tibial eminence fractures in children: prevalence of meniscal entrapment. Am J Sports Med. 2003;31(3):404–7.

    Article  Google Scholar 

  45. Shea KG, Grimm NL, Laor T, Wall E. Bone bruises and meniscal tears on MRI in skeletally immature children with tibial eminence fractures. J Pediatr Orthop. 2011;31(2):150–2.

    Article  Google Scholar 

  46. Lentz TA, Magill J, Myers H, Eposito V, Reinke E, Messer M, Riboh J. Development of a concise lower extremity physical performance test set for return to sport decision-making in pediatric populations. 2019 American Orthopedic Society of Sports Medicine (AOSSM) Annual Meeting, Boston, MA; 2019.

    Google Scholar 

  47. Dekker TJ, Godin JA, Dale KM, Garrett WE, Taylor DC, Riboh JC. Return to sport after pediatric anterior cruciate ligament reconstruction and its effect on subsequent anterior cruciate ligament injury. J Bone Joint Surg Am. 2017;99(11):897–904. https://doi.org/10.2106/JBJS.16.00758.

    Article  PubMed  Google Scholar 

  48. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44(7):1861–76. https://doi.org/10.1177/0363546515621554.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Greenberg EM, Greenberg ET, Ganley TJ, Lawrence JTR. Strength and functional performance recovery after anterior cruciate ligament reconstruction in preadolescent athletes. Sports Health. 2014;6(4):309–12. https://doi.org/10.1177/1941738114537594.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50(13):804–8. https://doi.org/10.1136/bjsports-2016-096031.

    Article  PubMed  Google Scholar 

  51. Bedi A, Musahl V, Cowan JB. Management of posterior cruciate ligament injuries: an evidence-based review. J Am Acad Orthop Surg. 2016;24(5):277–89. https://doi.org/10.5435/JAAOS-D-14-00326.

    Article  PubMed  Google Scholar 

  52. Kocher MS, Shore B, Nasreddine AY, Heyworth BE. Treatment of posterior cruciate ligament injuries in pediatric and adolescent patients. J Pediatr Orthop. 2012;32(6):553–60. https://doi.org/10.1097/BPO.0b013e318263a154.

    Article  PubMed  Google Scholar 

  53. Bushnell BD, Bitting SS, Crain JM, Boublik M, Schlegel TF. Treatment of magnetic resonance imaging-documented isolated grade III lateral collateral ligament injuries in National Football League athletes. Am J Sports Med. 2010;38(1):86–91. https://doi.org/10.1177/0363546509344075.

    Article  PubMed  Google Scholar 

  54. Miyamoto RG, Bosco JA, Sherman OH. Treatment of medial collateral ligament injuries. J Am Acad Orthop Surg. 2009;17(3):152–61.

    Article  Google Scholar 

  55. Redler LH, Wright ML. Surgical management of patellofemoral instability in the skeletally immature patient. J Am Acad Orthop Surg. 2018;26(19):e405–15. https://doi.org/10.5435/JAAOS-D-17-00255.

    Article  PubMed  Google Scholar 

  56. Bronstein RD, Schaffer JC. Physical examination of knee ligament injuries. J Am Acad Orthop Surg. 2017;25(4):280–7. https://doi.org/10.5435/JAAOS-D-15-00463.

    Article  PubMed  Google Scholar 

  57. Mountney J, Senavongse W, Amis AA, Thomas NP. Tensile strength of the medial patellofemoral ligament before and after repair or reconstruction. J Bone Joint Surg Br. 2005;87:36–40.

    Article  CAS  Google Scholar 

  58. Weinberger J, Fabricant PD, Taylor SA, Mei JY, Jones KJ. Influence of graft source and configuration on revision rate and patient-reported outcomes after MPFL reconstruction: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2017;25:2511–9.

    Article  Google Scholar 

  59. Weeks KD III, Fabricant P, Ladenhauf HG, Green DW. Surgical options for patellar stabilization in the skeletally immature patient. Sports Med Arthrosc Rev. 2012;20:194–202.

    Article  Google Scholar 

  60. Nolan JE, Schottel PC, Endres NK. Trochleoplasty: indications and technique. Curr Rev Musculoskelet Med. 2018;11(2):231–40. https://doi.org/10.1007/s12178-018-9478-z.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Houghton GR, Ackroyd CE. Sleeve fractures of the patella in children: a report of three cases. J Bone Joint Surg Br. 1979;61-B(2):165–8.

    Article  CAS  Google Scholar 

  62. Sousa PL, Stuart MJ, Prince MR, Dahm DL. Nonoperative management of minimally displaced patellar sleeve fractures. J Knee Surg. 2019; https://doi.org/10.1055/s-0039-1694742.

  63. Hunt DM, Somashekar N. A review of sleeve fractures of the patella in children. Knee. 2005;12(1):3–7. https://doi.org/10.1016/j.knee.2004.08.002.

    Article  PubMed  Google Scholar 

  64. Schiller J, DeFroda S, Blood T. Lower extremity avulsion fractures in the pediatric and adolescent athlete. J Am Acad Orthop Surg. 2017;25(4):251–9. https://doi.org/10.5435/JAAOS-D-15-00328.

    Article  PubMed  Google Scholar 

  65. Jakoi A, Freidl M, Old A, Javandel M, Tom J, Realyvasquez J. Tibial tubercle avulsion fractures in adolescent basketball players. Orthopedics. 2012;35(8):692–6. https://doi.org/10.3928/01477447-20120725-07.

    Article  PubMed  Google Scholar 

  66. Pretell-Mazzini J, Kelly DM, Sawyer JR, et al. Outcomes and complications of Tibial tubercle fractures in pediatric patients: a systematic review of the literature. J Pediatr Orthop. 2016;36(5):440–6. https://doi.org/10.1097/BPO.0000000000000488.

    Article  PubMed  Google Scholar 

  67. Shieh A, Bastrom T, Roocroft J, Edmonds EW, Pennock AT. Meniscus tear patterns in relation to skeletal immaturity: children versus adolescents. Am J Sports Med. 2013;41(12):2779–83. https://doi.org/10.1177/0363546513504286.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mosich GM, Lieu V, Ebramzadeh E, Beck JJ. Operative treatment of isolated meniscus injuries in adolescent patients: a meta-analysis and review. Sports Health. 2018;10(4):311–6. https://doi.org/10.1177/1941738118768201.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liechti DJ, Constantinescu DS, Ridley TJ, Chahla J, Mitchell JJ, Vap AR. Meniscal repair in pediatric populations: a systematic review of outcomes. Orthop J Sports Med. 2019;7(5):2325967119843355. https://doi.org/10.1177/2325967119843355.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kraus T, Heidari N, Švehlík M, Schneider F, Sperl M, Linhart W. Outcome of repaired unstable meniscal tears in children and adolescents. Acta Orthop. 2012;83(3):261–6. https://doi.org/10.3109/17453674.2012.693017.

  71. Kocher MS, Logan CA, Kramer DE. Discoid lateral meniscus in children: diagnosis, management, and outcomes. J Am Acad Orthop Surg. 2017;25(11):736–43. https://doi.org/10.5435/JAAOS-D-15-00491.

    Article  PubMed  Google Scholar 

  72. Ellis HB, Wise K, LaMont L, Copley L, Wilson P. Prevalence of discoid meniscus during arthroscopy for isolated lateral meniscal pathology in the pediatric population. J Pediatr Orthop. 2017;37(4):285–92. https://doi.org/10.1097/BPO.0000000000000630.

    Article  PubMed  Google Scholar 

  73. Watanabe M, Takeda SJ, Ikeuchi HJ. Atlas of arthroscopy. 2nd ed. Igaku-Shoin: Tokyo; 1969.

    Google Scholar 

  74. Klingele KE, Kocher MS, Hresko MT, Gerbino P, Micheli LJ. Discoid lateral meniscus: prevalence of peripheral rim instability. J Pediatr Orthop. 2004;24(1):79–82.

    Article  Google Scholar 

  75. Good CR, Green DW, Griffith MH, Valen AW, Widmann RF, Rodeo SA. Arthroscopic treatment of symptomatic discoid meniscus in children: classification, technique, and results. Arthroscopy. 2007;23(2):157–63.

    Article  Google Scholar 

  76. Wall EJ, Milewski MD, Carey JL, et al. The reliability of assessing radiographic healing of osteochondritis dissecans of the knee. Am J Sports Med. 2017;45(6):1370–5. https://doi.org/10.1177/0363546517698933.

    Article  PubMed  Google Scholar 

  77. Kessler JI, Jacobs JC Jr, Cannamela PC, Weiss JM, Shea KG. Demographics and epidemiology of osteochondritis dissecans of the elbow among children and adolescents. Orthop J Sports Med. 2018;6(12):232596711881584–6. https://doi.org/10.1177/2325967118815846.

    Article  Google Scholar 

  78. Chambers HG, Shea KG, Anderson AF, et al. American Academy of Orthopaedic Surgeons clinical practice guideline on: the diagnosis and treatment of osteochondritis dissecans. J Bone Joint Surg Am. 2012;94(14):1322–4. https://doi.org/10.2106/JBJS.9414ebo.

    Article  PubMed  Google Scholar 

  79. Ramski DE, Ganley TJ, Carey JL. A radiographic healing classification for osteochondritis dissecans of the knee provides good interobserver reliability. Orthop J Sports Med. 2017;5(12):232596711774084. https://doi.org/10.1177/2325967117740846.

    Article  Google Scholar 

  80. Carey JL, Wall EJ, Grimm NL, et al. Novel arthroscopic classification of osteochondritis dissecans of the knee: a multicenter reliability study. Am J Sports Med. 2016;44(7):1694–8. https://doi.org/10.1177/0363546516637175.

    Article  PubMed  Google Scholar 

  81. Wall EJ, Vourazeris J, Myer GD, et al. The healing potential of stable juvenile osteochondritis dissecans knee lesions. J Bone Joint Surg Am. 2008;90(12):2655–64. https://doi.org/10.2106/JBJS.G.01103.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Edmonds EW, Polousky J. A review of knowledge in osteochondritis dissecans: 123 years of minimal evolution from König to the ROCK study group. Clin Orthop Relat Res. 2013;471(4):1118–26. https://doi.org/10.1007/s11999-012-2290-y.

    Article  PubMed  Google Scholar 

  83. Kocher MS, Tucker R, Ganley TJ, Flynn JM. Management of osteochondritis dissecans of the knee: current concepts review. Am J Sports Med. 2006;34:1181–91.

    Article  Google Scholar 

  84. Chang GH, Paz DA, Dwek JR, Chung CB. Lower extremity overuse injuries in pediatric athletes: clinical presentation, imaging findings, and treatment. J Clin Imaging. 2013;37(5):836–46. https://doi.org/10.1016/j.clinimag.2013.04.002.

    Article  Google Scholar 

  85. Circi E, Atalay Y, Beyzadeoglu T. Treatment of Osgood-Schlatter disease: review of the literature. Musculoskelet Surg. 2017;101(3):195–200. https://doi.org/10.1007/s12306-017-0479-7.

    Article  PubMed  CAS  Google Scholar 

  86. Figueroa D, Figueroa F, Calvo R. Patellar tendinopathy: diagnosis and treatment. J Am Acad Orthop Surg. 2016;24(12):e184–92. https://doi.org/10.5435/JAAOS-D-15-00703.

    Article  PubMed  Google Scholar 

  87. Dragoo JL, Wasterlain AS, Braun HJ, Nead KT. Platelet-rich plasma as a treatment for patellar tendinopathy: a double-blind, randomized controlled trial. Am J Sports Med. 2014;42(3):610–8.

    Article  Google Scholar 

  88. Dimitrios S, Pantelis M, Kalliopi S. Comparing the effects of eccentric training with eccentric training and static stretching exercises in the treatment of patellar tendinopathy: a controlled clinical trial. Clin Rehabil. 2012;26(5):423–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. Riboh .

Editor information

Editors and Affiliations

Appendix

Appendix

figure a

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ESSKA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gregory, B.P., Riboh, J.C. (2020). Management of Knee Injuries in Adolescent Basketball Players. In: Laver, L., Kocaoglu, B., Cole, B., Arundale, A.J.H., Bytomski, J., Amendola, A. (eds) Basketball Sports Medicine and Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61070-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61070-1_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61069-5

  • Online ISBN: 978-3-662-61070-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics