Skip to main content

Sports Injuries: Knee

  • Living reference work entry
  • First Online:
Evidence-Based Imaging in Pediatrics

Part of the book series: Evidence-Based Imaging ((Evidence-Based Imag.))

  • 51 Accesses

Abstract

The incidence and prevalence of acute traumatic and chronic overuse knee injuries in children are on the rise with approximately 2.5 million sports-related knee injuries presenting to the Emergency Department annually. This averages to approximately 2.29 knee injuries per 1000 pediatric patients [1]. In the United States, up to 60 million children, between the ages of 6 and 18, participate in organized sports each year [2]. Participation at high to elite levels as well as at younger ages place greater demands on the growing musculoskeletal system, which can lead to reversible and irreversible adaptive changes and if not properly treated, can cause permanent damage and biomechanical failure. Sports such as basketball, football, and soccer produce the largest proportion of knee injuries [3], which are more common with girls. In particular, female high school athletes are 4–6 times more likely to sustain a major knee injury [3]. Common causes of injury, acute or overuse, include improper technique and muscle weakness, which can be treated with skills training and muscle strengthening or conditioning programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Andriolo L, Candrian C, Papio T, Cavicchioli A, Perdisa F, Filardo G. Osteochondritis Dissecans of the knee - conservative treatment strategies: a systematic review. Cartilage. 2019;10:267–77.

    Article  Google Scholar 

  2. Accadbled F, Vial J, Sales de Gauzy J. Osteochondritis dissecans of the knee. Orthop Traumatol Surg Res. 2018;104:S97–s105.

    Article  CAS  Google Scholar 

  3. Olstad K, Shea KG, Cannamela PC, et al. Juvenile osteochondritis dissecans of the knee is a result of failure of the blood supply to growth cartilage and osteochondrosis. Osteoarthr Cartil. 2018;26:1691–8.

    Article  CAS  Google Scholar 

  4. Kessler JI, Nikizad H, Shea KG, Jacobs JC Jr, Bebchuk JD, Weiss JM. The demographics and epidemiology of osteochondritis dissecans of the knee in children and adolescents. Am J Sports Med. 2014;42:320–6.

    Article  Google Scholar 

  5. Moktassi A, Popkin CA, White LM, Murnaghan ML. Imaging of osteochondritis dissecans. Orthop Clin North Am. 2012;43:201–11. v-vi

    Article  Google Scholar 

  6. Cruz AI Jr, Shea KG, Ganley TJ. Pediatric knee osteochondritis dissecans lesions. Orthop Clin North Am. 2016;47:763–75.

    Article  Google Scholar 

  7. Ananthaharan A, Randsborg PH. Epidemiology and patient-reported outcome after juvenile osteochondritis dissecans in the knee. Knee. 2018;25:595–601.

    Article  Google Scholar 

  8. Laor T, Zbojniewicz AM, Eismann EA, Wall EJ. Juvenile osteochondritis dissecans: is it a growth disturbance of the secondary physis of the epiphysis? AJR Am J Roentgenol. 2012;199:1121–8.

    Article  Google Scholar 

  9. Bohndorf K. Osteochondritis (osteochondrosis) dissecans: a review and new MRI classification. Eur Radiol. 1998;8:103–12.

    Article  CAS  Google Scholar 

  10. Sanders TL, Pareek A, Johnson NR, et al. Nonoperative management of osteochondritis dissecans of the knee: progression to osteoarthritis and arthroplasty at mean 13-year follow-up. Orthop J Sports Med. 2017;5:2325967117704644.

    Google Scholar 

  11. Sanders TL, Pareek A, Obey MR, et al. High rate of osteoarthritis after osteochondritis dissecans fragment excision compared with surgical restoration at a mean 16-year follow-up. Am J Sports Med. 2017;45:1799–805.

    Article  Google Scholar 

  12. Cahill BR. Osteochondritis dissecans of the knee: treatment of juvenile and adult forms. J Am Acad Orthop Surg. 1995;3:237–47.

    Article  CAS  Google Scholar 

  13. Milgram JW. Radiological and pathological manifestations of osteochondritis dissecans of the distal femur. A study of 50 cases. Radiology. 1978;126:305–11.

    Article  CAS  Google Scholar 

  14. Jans L, Jaremko J, Ditchfield M, et al. Ossification variants of the femoral condyles are not associated with osteochondritis dissecans. Eur J Radiol. 2012;81:3384–9.

    Article  CAS  Google Scholar 

  15. Kijowski R, Blankenbaker DG, Shinki K, Fine JP, Graf BK, De Smet AA. Juvenile versus adult osteochondritis dissecans of the knee: appropriate MR imaging criteria for instability. Radiology. 2008;248:571–8.

    Article  Google Scholar 

  16. Nguyen JC, Liu F, Blankenbaker DG, Woo KM, Kijowski R. Juvenile osteochondritis dissecans: cartilage T2 mapping of stable medial femoral condyle lesions. Radiology. 2018;288:536–43.

    Article  Google Scholar 

  17. Dipaola JD, Nelson DW, Colville MR. Characterizing osteochondral lesions by magnetic resonance imaging. Arthroscopy. 1991;7:101–4.

    Article  CAS  Google Scholar 

  18. Guhl JF. Arthroscopic treatment of osteochondritis dissecans. Clin Orthop Relat Res. 1982;167:65–74.

    Article  Google Scholar 

  19. De Smet AA, Ilahi OA, Graf BK. Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skelet Radiol. 1996;25:159–63.

    Article  Google Scholar 

  20. O’Connor MA, Palaniappan M, Khan N, Bruce CE. Osteochondritis dissecans of the knee in children. A comparison of MRI and arthroscopic findings. J Bone Joint Surg. 2002;84:258–62.

    Article  Google Scholar 

  21. Heywood CS, Benke MT, Brindle K, Fine KM. Correlation of magnetic resonance imaging to arthroscopic findings of stability in juvenile osteochondritis dissecans. Arthroscopy. 2011;27:194–9.

    Article  Google Scholar 

  22. Samora WP, Chevillet J, Adler B, Young GS, Klingele KE. Juvenile osteochondritis dissecans of the knee: predictors of lesion stability. J Pediatr Orthop. 2012;32:1–4.

    Article  Google Scholar 

  23. Roßbach BP, Paulus AC, Niethammer TR, et al. Discrepancy between morphological findings in juvenile osteochondritis dissecans (OCD): a comparison of magnetic resonance imaging (MRI) and arthroscopy. Knee Surg Sports Traumatol Arthrosc. 2016;24:1259–64.

    Article  Google Scholar 

  24. Hu H, Zhang C, Chen J, et al. Clinical value of MRI in assessing the stability of osteochondritis dissecans lesions: a systematic review and meta-analysis. AJR Am J Roentgenol. 2019;213:147–54.

    Article  Google Scholar 

  25. Uozumi H, Sugita T, Aizawa T, Takahashi A, Ohnuma M, Itoi E. Histologic findings and possible causes of osteochondritis dissecans of the knee. Am J Sports Med. 2009;37:2003–8.

    Article  Google Scholar 

  26. Krause M, Lehmann D, Amling M, et al. Intact bone vitality and increased accumulation of nonmineralized bone matrix in biopsy specimens of juvenile osteochondritis dissecans: a histological analysis. Am J Sports Med. 2015;43:1337–47.

    Article  Google Scholar 

  27. Yonetani Y, Nakamura N, Natsuume T, Shiozaki Y, Tanaka Y, Horibe S. Histological evaluation of juvenile osteochondritis dissecans of the knee: a case series. Knee Surg Sports Traumatol Arthrosc. 2010;18:723–30.

    Article  Google Scholar 

  28. Yellin JL, Gans I, Carey JL, Shea KG, Ganley TJ. The surgical Management of osteochondritis dissecans of the knee in the skeletally immature: a survey of the Pediatric Orthopaedic Society of North America (POSNA) membership. J Pediatr Orthop. 2017;37:491–9.

    Article  Google Scholar 

  29. Witvrouw E, Bellemans J, Lysens R, Danneels L, Cambier D. Intrinsic risk factors for the development of patellar tendinitis in an athletic population. A two-year prospective study. Am J Sports Med. 2001;29:190–5.

    Article  CAS  Google Scholar 

  30. Fithian DC, Paxton EW, Stone ML, et al. Epidemiology and natural history of acute patellar dislocation. Am J Sports Med. 2004;32:1114–21.

    Article  Google Scholar 

  31. Waterman BR, Belmont PJ Jr, Owens BD. Patellar dislocation in the United States: role of sex, age, race, and athletic participation. J Knee Surg. 2012;25:51–7.

    Article  Google Scholar 

  32. Sever R, Fishkin M, Hemo Y, Wientroub S, Yaniv M. Surgical treatment of congenital and obligatory dislocation of the patella in children. J Pediatr Orthop. 2019;39:436–40.

    Article  Google Scholar 

  33. Biyani R, Elias JJ, Saranathan A, et al. Anatomical factors influencing patellar tracking in the unstable patellofemoral joint. Knee Surg Sports Traumatol Arthrosc. 2014;22:2334–41.

    Article  Google Scholar 

  34. Huntington LS, Webster KE, Devitt BM, Scanlon JP, Feller JA. Factors associated with an increased risk of recurrence after a first-time patellar dislocation: a systematic review and meta-analysis. Am J Sports Med. 2020;48:2552–62.

    Article  Google Scholar 

  35. Colvin AC, West RV. Patellar instability. J Bone Joint Surg Am. 2008;90:2751–62.

    Article  Google Scholar 

  36. Insall J, Salvati E. Patella position in the normal knee joint. Radiology. 1971;101:101–4.

    Article  CAS  Google Scholar 

  37. Bollier M, Fulkerson JP. The role of trochlear dysplasia in patellofemoral instability. J Am Acad Orthop Surg. 2011;19:8–16.

    Article  Google Scholar 

  38. Hasler CC, Studer D. Patella instability in children and adolescents. EFORT Open Rev. 2016;1:160–6.

    Article  Google Scholar 

  39. Merchant AC, Mercer RL, Jacobsen RH, Cool CR. Roentgenographic analysis of patellofemoral congruence. J Bone Joint Surg Am. 1974;56:1391–6.

    Article  CAS  Google Scholar 

  40. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2:19–26.

    Article  CAS  Google Scholar 

  41. Tecklenburg K, Dejour D, Hoser C, Fink C. Bony and cartilaginous anatomy of the patellofemoral joint. Knee Surg Sports Traumato Arthrosc. 2006;14:235–40.

    Article  CAS  Google Scholar 

  42. Diederichs G, Issever AS, Scheffler S. MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics. 2010;30:961–81.

    Article  Google Scholar 

  43. Thévenin-Lemoine C, Ferrand M, Courvoisier A, Damsin JP, Ducou le Pointe H, Vialle R. Is the Caton-Deschamps index a valuable ratio to investigate patellar height in children? JBJS. 2011;93:e35.

    Article  Google Scholar 

  44. Walker P, Harris I, Leicester A. Patellar tendon-to-patella ratio in children. J Pediatr Orthop. 1998;18:129–31.

    Article  CAS  Google Scholar 

  45. Biedert RM, Gruhl C. Axial computed tomography of the patellofemoral joint with and without quadriceps contraction. Arch Orthop Trauma Surg. 1997;116:77–82.

    Article  CAS  Google Scholar 

  46. Elias DA, White LM, Fithian DC. Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology. 2002;225:736–43.

    Article  Google Scholar 

  47. Guerrero P, Li X, Patel K, Brown M, Busconi B. Medial patellofemoral ligament injury patterns and associated pathology in lateral patella dislocation: an MRI study. Sports Med Arthrosc Rehabilit Ther Technol. 2009;1:17.

    Google Scholar 

  48. Jaquith BP, Parikh SN. Predictors of recurrent patellar instability in children and adolescents after first-time dislocation. J Pediatr Orthop. 2017;37:484–90.

    Article  Google Scholar 

  49. Lewallen LW, McIntosh AL, Dahm DL. Predictors of recurrent instability after acute patellofemoral dislocation in pediatric and adolescent patients. Am J Sports Med. 2013;41:575–81.

    Article  Google Scholar 

  50. Mistovich RJ, Urwin JW, Fabricant PD, Lawrence JTR. Patellar tendon-lateral trochlear ridge distance: a novel measurement of patellofemoral instability. Am J Sports Med. 2018;46:3400–6.

    Article  Google Scholar 

  51. Weber AE, Nathani A, Dines JS, et al. An algorithmic approach to the management of recurrent lateral patellar dislocation. J Bone Joint Surg Am. 2016;98:417–27.

    Article  Google Scholar 

  52. Beck NA, Lawrence JTR, Nordin JD, DeFor TA, Tompkins M. ACL tears in school-aged children and adolescents over 20 years. Pediatrics. 2017;139

    Google Scholar 

  53. Davis DL, Almardawi R, Mitchell JW. Analysis of the tibial epiphysis in the skeletally immature knee using magnetic resonance imaging: an update of anatomic parameters pertinent to physeal-sparing anterior cruciate ligament reconstruction. Orthop J Sports Med. 2016;4:2325967116655313.

    Google Scholar 

  54. Fehnel DJ, Johnson R. Anterior cruciate injuries in the skeletally immature athlete: a review of treatment outcomes. Sports Med (Auckland, NZ). 2000;29:51–63.

    Article  CAS  Google Scholar 

  55. LaBella CR, Hennrikus W, Hewett TE. Anterior cruciate ligament injuries: diagnosis, treatment, and prevention. Pediatrics. 2014;133:e1437–50.

    Article  Google Scholar 

  56. Arastu MH, Grange S, Twyman R. Prevalence and consequences of delayed diagnosis of anterior cruciate ligament ruptures. Knee Surg Sports Traumatol Arthrosc. 2015;23:1201–5.

    Article  CAS  Google Scholar 

  57. Gornitzky AL, Lott A, Yellin JL, Fabricant PD, Lawrence JT, Ganley TJ. Sport-specific yearly risk and incidence of anterior cruciate ligament tears in high school athletes: a systematic review and meta-analysis. Am J Sports Med. 2016;44:2716–23.

    Article  Google Scholar 

  58. Mall NA, Chalmers PN, Moric M, et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014;42:2363–70.

    Article  Google Scholar 

  59. Smith JP 3rd, Barrett GR. Medial and lateral meniscal tear patterns in anterior cruciate ligament-deficient knees. A prospective analysis of 575 tears. Am J Sports Med. 2001;29:415–9.

    Article  Google Scholar 

  60. Chotel F, Seil R, Greiner P, Chaker MM, Berard J, Raux S. The difficult diagnosis of cartilaginous tibial eminence fractures in young children. Knee Surg Sports Traumatol Arthrosc. 2014;22:1511–6.

    Article  Google Scholar 

  61. Chotel F, Raux S, Accadbled F, et al. Cartilaginous tibial eminence fractures in children: which recommendations for management of this new entity? Knee Surg Sports Traumatol Arthrosc. 2016;24:688–96.

    Article  Google Scholar 

  62. Meyers AB, Laor T, Zbojniewicz AM. Stump entrapment of the anterior cruciate ligament in late childhood and adolescence. Pediatr Radiol. 2011;41:1040–6.

    Article  Google Scholar 

  63. Mitchell JJ, Sjostrom R, Mansour AA, et al. Incidence of meniscal injury and chondral pathology in anterior tibial spine fractures of children. J Pediatr Orthop. 2015;35:130–5.

    Article  Google Scholar 

  64. Zaricznyj B. Avulsion fracture of the tibial eminence: treatment by open reduction and pinning. J Bone Joint Surg Am. 1977;59:1111–4.

    Article  CAS  Google Scholar 

  65. Mayo MH, Mitchell JJ, Axibal DP, et al. Anterior cruciate ligament injury at the time of anterior tibial spine fracture in Young patients: an observational cohort study. J Pediatr Orthop. 2019;39:e668–73.

    Article  Google Scholar 

  66. Nguyen JC, Baghdadi S, Lawrence JTR, et al. Lateral meniscus posterior root injury: MRI findings in children with anterior cruciate ligament tear. AJR Am J Roentgenol. 2021;217:984–94.

    Article  Google Scholar 

  67. Nguyen JC, Bram JT, Lawrence JTR, et al. MRI criteria for meniscal ramp lesions of the knee in children with anterior cruciate ligament tears. AJR Am J Roentgenol. 2021;216:791–8.

    Article  Google Scholar 

  68. Cobby MJ, Schweitzer ME, Resnick D. The deep lateral femoral notch: an indirect sign of a torn anterior cruciate ligament. Radiology. 1992;184:855–8.

    Article  CAS  Google Scholar 

  69. Flores DV, Smitaman E, Huang BK, Resnick DL. Segond fracture: an MR evaluation of 146 patients with emphasis on the avulsed bone fragment and what attaches to it. Skelet Radiol. 2016;45:1635–47.

    Article  Google Scholar 

  70. Shaikh H, Herbst E, Rahnemai-Azar AA, et al. The segond fracture is an avulsion of the anterolateral complex. Am J Sports Med. 2017;45:2247–52.

    Article  Google Scholar 

  71. Lee K, Siegel MJ, Lau DM, Hildebolt CF, Matava MJ. Anterior cruciate ligament tears: MR imaging-based diagnosis in a pediatric population. Radiology. 1999;213:697–704.

    Article  CAS  Google Scholar 

  72. Aoyama JT, Maier P, Servaes S, et al. MR imaging of the shoulder in youth baseball players: anatomy, pathophysiology, and treatment. Clin Imaging. 2019;57:99–109.

    Article  Google Scholar 

  73. De Smet AA, Graf BK. Meniscal tears missed on MR imaging: relationship to meniscal tear patterns and anterior cruciate ligament tears. AJR Am J Roentgenol. 1994;162:905–11.

    Article  Google Scholar 

  74. Okoroha KR, Patel RB, Kadri O, et al. Abnormal tibial alignment is a risk factor for lateral meniscus posterior root tears in patients with anterior cruciate ligament ruptures. Knee Surg Sports Traumatol Arthrosc. 2019;27:590–5.

    Article  Google Scholar 

  75. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. Knee Surg Sports Traumatol Arthrosc. 2015;23:2967–73.

    Article  CAS  Google Scholar 

  76. Stephen JM, Halewood C, Kittl C, Bollen SR, Williams A, Amis AA. Posteromedial meniscocapsular lesions increase tibiofemoral joint laxity with anterior cruciate ligament deficiency, and their repair reduces laxity. Am J Sports Med. 2016;44:400–8.

    Article  Google Scholar 

  77. DePhillipo NN, Moatshe G, Brady A, et al. Effect of meniscocapsular and meniscotibial lesions in ACL-deficient and ACL-reconstructed knees: a biomechanical study. Am J Sports Med. 2018;46:2422–31.

    Article  Google Scholar 

  78. Mouton C, Magosch A, Pape D, Hoffmann A, Nührenbörger C, Seil R. Ramp lesions of the medial meniscus are associated with a higher grade of dynamic rotatory laxity in ACL-injured patients in comparison to patients with an isolated injury. Knee Surg Sports Traumatol Arthrosc. 2020;28:1023–8.

    Article  Google Scholar 

  79. Ahn JH, Wang JH, Yoo JC. Arthroscopic all-inside suture repair of medial meniscus lesion in anterior cruciate ligament--deficient knees: results of second-look arthroscopies in 39 cases. Arthroscopy. 2004;20:936–45.

    Article  Google Scholar 

  80. Papageorgiou CD, Gil JE, Kanamori A, Fenwick JA, Woo SL, Fu FH. The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am J Sports Med. 2001;29:226–31.

    Article  CAS  Google Scholar 

  81. Petersen KK, Siebuhr AS, Graven-Nielsen T, et al. Sensitization and serological biomarkers in knee osteoarthritis patients with different degrees of synovitis. Clin J Pain. 2016;32:841–8.

    Article  Google Scholar 

  82. Parkkari J, Pasanen K, Mattila VM, Kannus P, Rimpelä A. The risk for a cruciate ligament injury of the knee in adolescents and young adults: a population-based cohort study of 46 500 people with a 9 year follow-up. Br J Sports Med. 2008;42:422–6.

    Article  CAS  Google Scholar 

  83. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35:1756–69.

    Article  Google Scholar 

  84. Crawford EA, Young LJ, Bedi A, Wojtys EM. The effects of delays in diagnosis and surgical reconstruction of ACL tears in skeletally immature individuals on subsequent meniscal and chondral injury. J Pediatr Orthop. 2019;39:55–8.

    Article  Google Scholar 

  85. Chotel F, Henry J, Seil R, Chouteau J, Moyen B, Bérard J. Growth disturbances without growth arrest after ACL reconstruction in children. Knee Surg Sports Traumatol Arthrosc. 2010;18:1496–500.

    Article  Google Scholar 

  86. Dumont GD, Hogue GD, Padalecki JR, Okoro N, Wilson PL. Meniscal and chondral injuries associated with pediatric anterior cruciate ligament tears: relationship of treatment time and patient-specific factors. Am J Sports Med. 2012;40:2128–33.

    Article  Google Scholar 

  87. Lawrence JT, Argawal N, Ganley TJ. Degeneration of the knee joint in skeletally immature patients with a diagnosis of an anterior cruciate ligament tear: is there harm in delay of treatment? Am J Sports Med. 2011;39:2582–7.

    Article  Google Scholar 

  88. Millett PJ, Willis AA, Warren RF. Associated injuries in pediatric and adolescent anterior cruciate ligament tears: does a delay in treatment increase the risk of meniscal tear? Arthroscopy. 2002;18:955–9.

    Article  Google Scholar 

  89. Guenther ZD, Swami V, Dhillon SS, Jaremko JL. Meniscal injury after adolescent anterior cruciate ligament injury: how long are patients at risk? Clin Orthop Relat Res. 2014;472:990–7.

    Article  Google Scholar 

  90. O’Connor KM, Monteiro SK, Hoelker IA. Comparison of selected lateral cutting activities used to assess ACL injury risk. J Appl Biomech. 2009;25:9–21.

    Article  Google Scholar 

  91. Kay J, Memon M, Shah A, et al. Earlier anterior cruciate ligament reconstruction is associated with a decreased risk of medial meniscal and articular cartilage damage in children and adolescents: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2018;26:3738–53.

    Article  Google Scholar 

  92. Dunn KL, Lam KC, Valovich McLeod TC. Early operative versus delayed or nonoperative treatment of anterior cruciate ligament injuries in pediatric patients. J Athl Train. 2016;51:425–7.

    Article  Google Scholar 

  93. Wong KP, Han AX, Wong JL, Lee DY. Reliability of magnetic resonance imaging in evaluating meniscal and cartilage injuries in anterior cruciate ligament-deficient knees. Knee Surg Sports Traumatol Arthrosc. 2017;25:411–7.

    Article  Google Scholar 

  94. Ramski DE, Kanj WW, Franklin CC, Baldwin KD, Ganley TJ. Anterior cruciate ligament tears in children and adolescents: a meta-analysis of nonoperative versus operative treatment. Am J Sports Med. 2014;42:2769–76.

    Article  Google Scholar 

  95. Gicquel P, Geffroy L, Robert H, et al. MRI assessment of growth disturbances after ACL reconstruction in children with open growth plates-prospective multicenter study of 100 patients. Orthop Traumatol Surg Res. 2018;104:S175–s181.

    Article  Google Scholar 

  96. Mizuta H, Kubota K, Shiraishi M, Otsuka Y, Nagamoto N, Takagi K. The conservative treatment of complete tears of the anterior cruciate ligament in skeletally immature patients. J Bone Joint Surg. 1995;77:890–4.

    Article  CAS  Google Scholar 

  97. Nguyen JC, De Smet AA, Graf BK, Rosas HG. MR imaging-based diagnosis and classification of meniscal tears. Radiographics. 2014;34:981–99.

    Article  Google Scholar 

  98. Kramer DE, Micheli LJ. Meniscal tears and discoid meniscus in children: diagnosis and treatment. J Am Acad Orthop Surg. 2009;17:698–707.

    Article  Google Scholar 

  99. Werner BC, Yang S, Looney AM, Gwathmey FW Jr. Trends in pediatric and adolescent anterior cruciate ligament injury and reconstruction. J Pediatr Orthop. 2016;36:447–52.

    Article  Google Scholar 

  100. Jordan MR. Lateral meniscal variants: evaluation and treatment. J Am Acad Orthop Surg. 1996;4:191–200.

    Article  CAS  Google Scholar 

  101. Kim JH, Ahn JH, Kim JH, Wang JH. Discoid lateral meniscus: importance, diagnosis, and treatment. J Exp Orthop. 2020;7:81.

    Article  Google Scholar 

  102. Rohren EM, Kosarek FJ, Helms CA. Discoid lateral meniscus and the frequency of meniscal tears. Skelet Radiol. 2001;30:316–20.

    Article  CAS  Google Scholar 

  103. Watanabe M, Takeda S, Ikeuchi H. Atlas of arthroscopy. 3rd ed. Tokyo: Igaku-Shoin; 1979. p. p75–130.

    Google Scholar 

  104. Bin SI, Kim JC, Kim JM, Park SS, Han YK. Correlation between type of discoid lateral menisci and tear pattern. Knee Surg Sports Traumatol Arthrosc. 2002;10:218–22.

    Article  Google Scholar 

  105. Silverman JM, Mink JH, Deutsch AL. Discoid menisci of the knee: MR imaging appearance. Radiology. 1989;173:351–4.

    Article  CAS  Google Scholar 

  106. Araki Y, Yamamoto H, Nakamura H, Tsukaguchi I. MR diagnosis of discoid lateral menisci of the knee. Eur J Radiol. 1994;18:92–5.

    Article  CAS  Google Scholar 

  107. Stark JE, Siegel MJ, Weinberger E, Shaw DW. Discoid menisci in children: MR features. J Comput Assist Tomogr. 1995;19:608–11.

    Article  CAS  Google Scholar 

  108. Bedoya MA, Barrera CA, Chauvin NA, Delgado J, Jaramillo D, Ho-Fung VM. Normal meniscal dimensions at different patient ages-MRI evaluation. Skelet Radiol. 2019;48:595–603.

    Article  Google Scholar 

  109. Connolly B, Babyn PS, Wright JG, Thorner PS. Discoid meniscus in children: magnetic resonance imaging characteristics. Can Assoc Radiol J. 1996;47:347–54.

    CAS  Google Scholar 

  110. Singh K, Helms CA, Jacobs MT, Higgins LD. MRI appearance of Wrisberg variant of discoid lateral meniscus. AJR Am J Roentgenol. 2006;187:384–7.

    Article  Google Scholar 

  111. Moser MW, Dugas J, Hartzell J, Thornton DD. A hypermobile Wrisberg variant lateral discoid meniscus seen on MRI. Clin Orthop Relat Res. 2007;456:264–7.

    Article  Google Scholar 

  112. Samoto N, Kozuma M, Tokuhisa T, Kobayashi K. Diagnosis of discoid lateral meniscus of the knee on MR imaging. Magn Reson Imaging. 2002;20:59–64.

    Article  Google Scholar 

  113. Jackson T, Fabricant PD, Beck N, Storey E, Patel NM, Ganley TJ. Epidemiology, injury patterns, and treatment of meniscal tears in pediatric patients: a 16-year experience of a single center. Orthop J Sports Med. 2019;7:2325967119890325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gendler, L., Ho-Fung, V., Grady, M., Lawrence, J.T., Ganley, T.J., Nguyen, J. (2022). Sports Injuries: Knee. In: Otero, H.J., Kaplan, S.L., Medina, L.S., Blackmore, C.C., Applegate, K.E. (eds) Evidence-Based Imaging in Pediatrics. Evidence-Based Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-38095-3_88-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38095-3_88-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38095-3

  • Online ISBN: 978-3-030-38095-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics