Skip to main content

Refraktive Intraokularchirurgie

  • Chapter
  • First Online:
Refraktive Chirurgie

Zusammenfassung

Nachdem bereits im Jahr 1889 Fukala in Wien über eine refraktive Linsenextraktion bei höher myopen Augen berichtet hatte, wurde dieses Verfahren jedoch zu Beginn des 20. Jahrhunderts aufgrund der hohen postoperativen Komplikationsrate wieder verlassen, da insbesondere eine hohe Netzhautablösungsrate von 3,5–5,5 % beobachtet worden war. Dies stellte damals einen fast 10-fachen Anstieg der Inzidenz der Netzhautablösung im Vergleich zu nichtoperierten Augen dar.

Seit dem vergangenen Jahrhundert hat sich das Verfahren des refraktiven Linsenaustausches (RLA) durch eine ganze Reihe technischer Fortschritte deutlich verändert und verbessert. Innovationen im Bereich des Intraokularlinsendesigns, Verwendung viskoelastischer Substanzen und neue operative Techniken wie Phakoemulsifikation und mikroinzisionale Chirurgie führten zu einer steten Verbesserung der Sicherheit und Effizienz des RLA, sodass dieser heute zu einem der Standardverfahren in der refraktiven Chirurgie gehört.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Fukala V (1890) Behandlung der höchstgradigen Myopie durch Aphakie. Graefes Arch Ophthalmol 36:230–244

    Article  Google Scholar 

  • Fischer E (1899) Operation der Kurzsichtigkeit und Ablösung der Netzhaut. Cent Augenheilkd 23:79

    Google Scholar 

  • Fröhlich C (1899) Über spontane und postoperative Kurzsichtigkeitsnetzhautablösungen. Arch Augenheilkd 38:11–26

    Google Scholar 

  • Kohnen T, Knorz MC, Neuhann T (2007) Evaluation and quality assurance of refractive surgery procedures by the german ophthalmological society and the professional association of german ophthalmologists. Ophthalmologe 104(8):719–726

    Article  CAS  PubMed  Google Scholar 

  • Neuhann T (1987) Theorie und Operationstechnik der Kapsulorhexis [Theory and surgical technic of capsulorhexis. Klin Monbl Augenheilkd 190(6):542–545

    Article  CAS  PubMed  Google Scholar 

  • Woltsche N, Werkl P, Posch-Pertl L, Ardjomand N, Frings A (2019) Astigmatism. Ophthalmologe 116(3):293–304

    Article  CAS  PubMed  Google Scholar 

  • Kohnen T, Klaproth OK (2009) Correction of astigmatism during cataract surgery. Klin Monbl Augenheilkd 226(8):596–604

    Article  CAS  PubMed  Google Scholar 

  • Visser N, Beckers HJ, Bauer NJ, Gast ST, Zijlmans BL, Berenschot TT et al (2014) Toric vs aspherical control intraocular lenses in patients with cataract and corneal astigmatism: a randomized clinical trial. JAMA Ophthalmol 132(12):1462–1468

    Article  PubMed  Google Scholar 

  • Hoffmann PC, Hutz WW (2010) Analysis of biometry and prevalence data for corneal astigmatism in 23,239 eyes. J Cataract Refract Surg 36(9):1479–1485

    Article  PubMed  Google Scholar 

  • Hirnschall N, Hoffmann PC, Draschl P, Maedel S, Findl O (2014) Evaluation of factors influencing the remaining astigmatism after toric intraocular lens implantation. J Refract Surg 30(6):394–400

    Article  PubMed  Google Scholar 

  • Hoffmann PC, Abraham M, Hirnschall N, Findl O (2014) Prediction of residual astigmatism after cataract surgery using swept source fourier domain optical coherence tomography. Curr Eye Res 39(12):1178–1186

    Article  PubMed  Google Scholar 

  • Norrby S, Hirnschall N, Nishi Y, Findl O (2013) Fluctuations in corneal curvature limit predictability of intraocular lens power calculations. J Cataract Refract Surg 39(2):174–179

    Article  PubMed  Google Scholar 

  • Shajari M, Cremonese C, Petermann K, Singh P, Muller M, Kohnen T (2017) Comparison of axial length, corneal curvature, and anterior chamber depth measurements of 2 recently introduced devices to a known biometer. Am J Ophthalmol 178:58–64

    Article  PubMed  Google Scholar 

  • Fabian E, Wehner W (2019) Prediction accuracy of total keratometry compared to standard keratometry using different Intraocular lens power formulas. J Refract Surg 35(6):362–368

    Article  PubMed  Google Scholar 

  • Shajari M, Sonntag R, Ramsauer M, Kreutzer T, Vounotrypidis E, Kohnen T et al (2020) Evaluation of total corneal power measurements with a new optical biometer. J Cataract Refract Surg 46(5):675–681

    Article  PubMed  Google Scholar 

  • Ferreira TB, Ribeiro P, Ribeiro FJ, O’Neill JG (2017) Comparison of methodologies using estimated or measured values of total corneal astigmatism for toric Intraocular lens power calculation. J Refract Surg 33(12):794–800

    Article  PubMed  Google Scholar 

  • Kern C, Kortum K, Muller M, Kampik A, Priglinger S, Mayer WJ (2018) Comparison of two toric IOL calculation methods. J Ophthalmol 2018:2840246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch DD, Ali SF, Weikert MP, Shirayama M, Jenkins R, Wang L (2012) Contribution of posterior corneal astigmatism to total corneal astigmatism. J Cataract Refract Surg 38(12):2080–2087

    Article  PubMed  Google Scholar 

  • Koch DD, Jenkins RB, Weikert MP, Yeu E, Wang L (2013) Correcting astigmatism with toric intraocular lenses: effect of posterior corneal astigmatism. J Cataract Refract Surg 39(12):1803–1809

    Article  PubMed  Google Scholar 

  • Ho JD, Tsai CY, Liou SW (2009) Accuracy of corneal astigmatism estimation by neglecting the posterior corneal surface measurement. Am J Ophthalmol 147(5):788–795.e1–2

    Article  PubMed  Google Scholar 

  • Savini G, Versaci F, Vestri G, Ducoli P, Naeser K (2014) Influence of posterior corneal astigmatism on total corneal astigmatism in eyes with moderate to high astigmatism. J Cataract Refract Surg 40(10):1645–1653

    Article  PubMed  Google Scholar 

  • Tonn B, Klaproth OK, Kohnen T (2014) Anterior surface-based keratometry compared with Scheimpflug tomography-based total corneal astigmatism. Investig Ophthalmol Vis Sci 56(1):291–298

    Article  Google Scholar 

  • Rozema JJ, Wouters K, Mathysen DG, Tassignon MJ (2014) Overview of the repeatability, reproducibility, and agreement of the biometry values provided by various ophthalmic devices. Am J Ophthalmol 158(6):1111–1120.e1

    Article  PubMed  Google Scholar 

  • Bland JM, Altman DG (1997) Cronbach’s alpha. BMJ 314(7080):572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skrzypecki J, Sanghvi Patel M, Suh LH (2019) Performance of the Barrett toric calculator with and without measurements of posterior corneal curvature. Eye 33(11):1762–1767

    Article  PubMed  PubMed Central  Google Scholar 

  • Savini G, Naeser K (2015) An analysis of the factors influencing the residual refractive astigmatism after cataract surgery with toric intraocular lenses. Investig Ophthalmol Vis Sci 56(2):827–835

    Article  Google Scholar 

  • Abulafia A, Koch DD, Wang L, Hill WE, Assia EI, Franchina M et al (2016) New regression formula for toric intraocular lens calculations. J Cataract Refract Surg 42(5):663–671

    Article  PubMed  Google Scholar 

  • Hirnschall N, Buehren T, Bajramovic F, Trost M, Teuber T, Findl O (2017) Prediction of postoperative intraocular lens tilt using swept-source optical coherence tomography. J Cataract Refract Surg 43(6):732–736

    Article  PubMed  Google Scholar 

  • Vokrojova M, Havlickova L, Brozkova M, Hlinomazova Z (2020) Effect of capsular tension ring implantation on postoperative rotational stability of a toric Intraocular lens. J Refract Surg 36(3):186–192

    Article  PubMed  Google Scholar 

  • Mayer WJ, Kreutzer T, Dirisamer M, Kern C, Kortuem K, Vounotrypidis E et al (2017) Comparison of visual outcomes, alignment accuracy, and surgical time between 2 methods of corneal marking for toric intraocular lens implantation. J Cataract Refract Surg 43(10):1281–1286

    Article  PubMed  Google Scholar 

  • Webers VSC, Bauer NJC, Visser N, Berendschot T, van den Biggelaar F, Nuijts R (2017) Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery. J Cataract Refract Surg 43(6):781–788

    Article  PubMed  Google Scholar 

  • He C, Joergensen JS, Knorz MC, McKay KN, Zhang F (2020) Three-step treatment of keratoconus and post-LASIK ectasia: implantation of ICRS, corneal cross-linking, and implantation of toric posterior chamber Phakic IOLs. J Refract Surg 36(2):104–109

    Article  PubMed  Google Scholar 

  • Alio JL, Pena-Garcia P, Abdulla Guliyeva F, Soria FA, Zein G, Abu-Mustafa SK (2014) MICS with toric intraocular lenses in keratoconus: outcomes and predictability analysis of postoperative refraction. Br J Ophthalmol 98(3):365–370

    Article  PubMed  Google Scholar 

  • Visser N, Gast ST, Bauer NJ, Nuijts RM (2011) Cataract surgery with toric intraocular lens implantation in keratoconus: a case report. Cornea 30(6):720–723

    Article  PubMed  Google Scholar 

  • Yokogawa H, Sanchez PJ, Mayko ZM, Straiko MD, Terry MA (2017) Astigmatism correction with toric intraocular lenses in descemet membrane endothelial keratoplasty triple procedures. Cornea 36(3):269–274

    Article  PubMed  Google Scholar 

  • Wade M, Steinert RF, Garg S, Farid M, Gaster R (2014) Results of toric intraocular lenses for post-penetrating keratoplasty astigmatism. Ophthalmology 121(3):771–777

    Article  PubMed  Google Scholar 

  • Moshirfar M, Somani AN, Motlagh MN, Vaidyanathan U, Sumsion JS, Barnes JR et al (2019) Comparison of FDA-reported visual and refractive outcomes of the Toric ICL lens, SMILE, and topography-guided LASIK for the correction of myopia and myopic astigmatism. J Refract Surg 35(11):699–706

    Article  PubMed  Google Scholar 

  • Vounotrypidis E, Haralanova V, Muth DR, Wertheimer C, Shajari M, Wolf A et al (2019) Accuracy of SS-OCT biometry compared with partial coherence interferometry biometry for combined phacovitrectomy with internal limiting membrane peeling. J Cataract Refract Surg 45(1):48–53

    Article  PubMed  Google Scholar 

  • Hassenstein A, Niemeck F, Giannakakis K, Klemm M (2017) Toric add-on intraocular lenses for correction of high astigmatism after pseudophakic keratoplasty. Ophthalmologe 114(6):549–555

    Article  CAS  PubMed  Google Scholar 

  • Varas J App Store. https://apps.apple.com/de/app/axis-assistant/id843536178?l=sv

  • Langenbucher A, Viestenz A, Szentmary N, Viestenz A, Eppig T, Seitz B (2010) Correction of corneal astigmatism with toric lenses: theory and clinical aspects. Ophthalmologe 107(2):189–201

    Article  CAS  PubMed  Google Scholar 

  • Berdahl JP, Hardten DR, Kramer BA, Potvin R (2017) The effect of lens sphere and cylinder power on residual astigmatism and its resolution after toric intraocular lens implantation. J Refract Surg 33(3):157–162

    Article  PubMed  Google Scholar 

  • Holden BA, Fricke TR, Ho SM, Wong R, Schlenther G, Cronjé S, Burnett A, Papas E, Naidoo KS, Frick KD (2008) Global vision impairment due to uncorrected presbyopia. JAMA Ophthalmol 126:1731–1739

    Google Scholar 

  • Zebardast N, Friedman DS, Vitale S (2017) The prevalence and demographic associations of presenting near-vision impairment among adults living in the United States. Am J Ophthalmol 174:134–144

    Article  PubMed  Google Scholar 

  • He M, Abdou A, Naidoo KS, Sapkota YD, Thulasiraj RD, Varma R, Zhao J, Ellwein LB (2012) Prevalence and correction of near vision impairment at seven sites in China, India, Nepal, Niger, South Africa, and the United States. Am J Ophthalmol 154:107–116.e101

    Article  PubMed  Google Scholar 

  • von Helmholtz H (1962) Helmholtz’s treatise on physiological optics. Dover Publications

    Google Scholar 

  • Schachar RA, Tello C, Cudmore DP, Liebmann JM, Black TD, Ritch R (1996) In vivo increase of the human lens equatorial diameter during accommodation. Am J Physiol 271:R670–R676

    CAS  PubMed  Google Scholar 

  • Van de Sompel D, Kunkel GJ, Hersh PS, Smits AJ (2010) Model of accommodation: contributions of lens geometry and mechanical properties to the development of presbyopia. J Cataract Refract Surg 36:1960–1971

    Article  PubMed  Google Scholar 

  • Keates RH, Pearce JL, Schneider RT (1987) Clinical results of the multifocal lens. J Cataract Refract Surg 13:557–560

    Article  CAS  PubMed  Google Scholar 

  • Keates RH (1989) The first American experience with the multifocal lens. Dev Ophthalmol 18:121–124

    Article  CAS  PubMed  Google Scholar 

  • Duffey RJ, Zabel RW, Lindstrom RL (1990) Multifocal intraocular lenses. J Cataract Refract Surg 16:423–429

    Article  CAS  PubMed  Google Scholar 

  • Hessemer V, Eisenmann D, Jacobi KW (1993) Multifocal intraocular lenses – an assessment of current status. Klin Monbl Augenheilkd 203:19–33

    Article  CAS  PubMed  Google Scholar 

  • Gilmartin B (1995) The aetiology of presbyopia: a summary of the role of lenticular and extralenticular structures. Ophthalmic Physiol Opt 15:431–437

    Article  CAS  PubMed  Google Scholar 

  • Abdelkader A (2015) Improved presbyopic vision with miotics. Eye Contact Lens 41:323–327

    Article  PubMed  Google Scholar 

  • Benozzi J, Benozzi G, Orman B (2012) Presbyopia: a new potential pharmacological treatment. Med Hypothesis Discov Innov Ophthalmol J 1:3–5

    Google Scholar 

  • McDonnell PJ, Lee P, Spritzer K, Lindblad AS, Hays RD (2003) Associations of presbyopia with vision-targeted health-related quality of life. JAMA Ophthalmol 121:1577–1581

    Google Scholar 

  • Goertz AD, Stewart WC, Burns WR, Stewart JA, Nelson LA (2014) Review of the impact of presbyopia on quality of life in the developing and developed world. Acta Ophthalmol 92:497–500

    Article  PubMed  Google Scholar 

  • Patel I, West SK (2007) Presbyopia: prevalence, impact, and interventions. Community Eye Health 20:40–41

    PubMed  Google Scholar 

  • Young G, Chalmers RL, Napier L, Hunt C, Kern J (2011) Characterizing contact lens-related dryness symptoms in a cross-section of UK soft lens wearers. Contact Lens Anterior Eye 34:64–70

    Article  PubMed  Google Scholar 

  • Versura P, Cellini M, Torreggiani A, Profazio V, Bernabini B, Caramazza R (2001) Dryness symptoms, diagnostic protocol and therapeutic management: a report on 1,200 patients. Ophthalmic Res 33:221–227

    Article  CAS  PubMed  Google Scholar 

  • Viso E, Rodriguez-Ares MT, Gude F (2009) Prevalence of and associated factors for dry eye in a Spanish adult population (the Salnes eye study). Ophthalmic Epidemiol 16:15–21

    Article  PubMed  Google Scholar 

  • Li X-M, Hu L, Hu J, Wang W (2007) Investigation of dry eye disease and analysis of the pathogenic factors in patients after cataract surgery. Cornea 26(9 Suppl 1):S16–20

    Article  PubMed  Google Scholar 

  • Ram J, Gupta A, Brar GS, Kaushik S, Gupta A (2002) Outcomes of phacoemulsification in patients with dry eye. J Cataract Refract Surg 28:1386–1389

    Article  PubMed  Google Scholar 

  • Al-Saedi Z, Zimmerman A, Bachu RD, Dey S, Shah Z, Baugh R, Boddu SH (2016) Dry eye disease: present challenges in the management and future trends. Curr. Pharm. Des. 22:4470–4490

    Article  CAS  PubMed  Google Scholar 

  • Baer AN, Walitt B (2017) Sjögren syndrome and other causes of sicca in older adults. Clin Geriatr Med 33:87–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas UV (2020) Fuchs endothelial corneal dystrophy: the vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res 80:100863

    Article  PubMed  Google Scholar 

  • Gehrs KM, Anderson DH, Johnson LV, Hageman GS (2006) Age-related macular degeneration – emerging pathogenetic and therapeutic concepts. Ann Med 38:450–471

    Article  PubMed  Google Scholar 

  • Age-Related Eye Disease Study Research Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119(1960):1417–1436

    PubMed Central  Google Scholar 

  • Lambert NG, ElShelmani H, Singh MK, Mansergh FC, Wride MA, Padilla M, Keegan D, Hogg RE, Ambati BK (2016) Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res 54:64–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivaprasad S, Gupta B, Crosby-Nwaobi R, Evans J (2012) Prevalence of diabetic retinopathy in various ethnic groups: a worldwide perspective. Surv Ophthalmol 57:347–370

    Article  PubMed  Google Scholar 

  • Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris 3rd FL, Klein R (2004) Retinopathy in diabetes. Diabetes Care 27(Suppl 1):S84–S87

    Article  PubMed  Google Scholar 

  • De Moraes CG, Liebmann JM, Levin LA (2017) Detection and measurement of clinically meaningful visual field progression in clinical trials for glaucoma. Prog Retin Eye Res 56:107–147

    Article  PubMed  Google Scholar 

  • Nobl M, Mackert M (2019) Pseudoexfoliation syndrome and glaucoma. Klin Monbl Augenheilkd 236:1139–1155

    Article  PubMed  Google Scholar 

  • McAlinden C (2014) The importance of doctor-patient communication. Br J Hosp Med 75:64–65

    Article  Google Scholar 

  • Panagiotopoulou EK, Ntonti P, Vlachou E, Georgantzoglou K, Labiris G (2018) Patients’ expectations in lens extraction surgery: a systematic review. Acta Med. 61:115–124

    Google Scholar 

  • Kohnen T, Buhren J, Cichocki M, Kasper T, Terzi E, Ohrloff C (2006) Optical quality after refractive corneal surgery. Ophthalmologe 103:184–191

    Article  CAS  PubMed  Google Scholar 

  • de Vries NE, Nuijts RM (2013) Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects. J Cataract Refract Surg 39:268–278

    Article  PubMed  Google Scholar 

  • Alió JL, Pikkel J (2014) Multifocal intraocular lenses: neuroadaptation. In: Multifocal intraocular lenses. Springer, S 47–52

    Chapter  Google Scholar 

  • Kamiya K, Hayashi K, Shimizu K, Negishi K, Sato M, Bissen-Miyajima H, Surgery SWGotJSoCaR (2014) Multifocal intraocular lens explantation: a case series of 50 eyes. Am J Ophthalmol 158:215–220.e211

    Article  PubMed  Google Scholar 

  • Hayashi K, Manabe S, Yoshida M, Hayashi H (2010) Effect of astigmatism on visual acuity in eyes with a diffractive multifocal intraocular lens. J Cataract Refract Surg 36:1323–1329

    Article  PubMed  Google Scholar 

  • Gangwani V, Hirnschall N, Findl O, Maurino V (2014) Multifocal toric intraocular lenses versus multifocal intraocular lenses combined with peripheral corneal relaxing incisions to correct moderate astigmatism. J Cataract Refract Surg 40:1625–1632

    Article  PubMed  Google Scholar 

  • Pepin SM (2008) Neuroadaptation of presbyopia-correcting intraocular lenses. Curr Opin Ophthalmol 19:10–12

    Article  PubMed  Google Scholar 

  • Koch DD, Samuelson SW, Villarreal R, Haft EA, Kohnen T (1996) Changes in pupil size induced by phacoemulsification and posterior chamber lens implantation: consequences for multifocal lenses. J Cataract Refract Surg 22:579–584

    Article  CAS  PubMed  Google Scholar 

  • Sahbaz I (2018) Assessment of differences in pupil size following phacoemulsification surgery. Int J Appl Basic Med Res 8:155–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Boerner CF, Thrasher BH (1984) Results of monovision correction in bilateral pseudophakes. J Am Intra Ocular Implant Soc 10:49–50

    Article  CAS  Google Scholar 

  • Ito M, Shimizu K, Iida Y, Amano R (2012) Five-year clinical study of patients with pseudophakic monovision. J Cataract Refract Surg 38:1440–1445

    Article  PubMed  Google Scholar 

  • Handa T, Mukuno K, Uozato H, Niida T, Shoji N, Minei R, Nitta M, Shimizu K (2004) Ocular dominance and patient satisfaction after monovision induced by intraocular lens implantation. J Cataract Refract Surg 30:769–774

    Article  PubMed  Google Scholar 

  • Kohnen T (2009) New abbreviations for visual acuity values. J Cataract Refract Surg 35:1145

    Article  PubMed  Google Scholar 

  • Montés-Micó R, Ferrer-Blasco T, Cerviño A (2009) Analysis of the possible benefits of aspheric intraocular lenses: review of the literature. J Cataract Refract Surg 35:172–181

    Article  PubMed  Google Scholar 

  • Zhang F, Sugar A, Arbisser L, Jacobsen G, Artico J (2015) Crossed versus conventional pseudophakic monovision: patient satisfaction, visual function, and spectacle independence. J Cataract Refract Surg 41:1845–1854

    Article  PubMed  Google Scholar 

  • Goldberg DG, Goldberg MH, Shah R, Meagher JN, Ailani H (2018) Pseudophakic mini-monovision: high patient satisfaction, reduced spectacle dependence, and low cost. BMC Ophthalmol 18:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Durrie DS (2006) The effect of different monovision contact lens powers on the visual function of emmetropic presbyopic patients (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 104:366–401

    PubMed  PubMed Central  Google Scholar 

  • Zhang F, Sugar A, Jacobsen G, Collins M (2011) Visual function and spectacle independence after cataract surgery: bilateral diffractive multifocal intraocular lenses versus monovision pseudophakia. J Cataract Refract Surg 37:853–858

    Article  PubMed  Google Scholar 

  • Labiris G, Ntonti P, Panagiotopoulou EK, Konstantinidis A, Gkika M, Dardabounis D, Perente I, Sideroudi H (2018) Impact of light conditions on reading ability following multifocal pseudophakic corrections. Clin Ophthalmol 12:2639–2646

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans BJW (2007) Monovision: a review. Ophthalmic Physiol Opt 27:417–439

    Article  PubMed  Google Scholar 

  • Wilkins MR, Allan BD, Rubin GS, Findl O, Hollick EJ, Bunce C, Xing W (2013) Randomized trial of multifocal intraocular lenses versus monovision after bilateral cataract surgery. Ophthalmology 120:2449–2455.e1

    Article  PubMed  Google Scholar 

  • Labiris G, Toli A, Perente A, Ntonti P, Kozobolis VP (2017) A systematic review of pseudophakic monovision for presbyopia correction. Int J Ophthalmol 10:992–1000

    PubMed  PubMed Central  Google Scholar 

  • Kohnen T, Kook D, Auffarth GU, Derhartunian V (2008) Use of multifocal intraocular lenses and criteria for patient selection. Ophthalmologe 105:527–532

    Article  CAS  PubMed  Google Scholar 

  • Javitt JC, Steinert RF (2000) Cataract extraction with multifocal intraocular lens implantation: a multinational clinical trial evaluating clinical, functional, and quality-of-life outcomes. Ophthalmology 107:2040–2048

    Article  CAS  PubMed  Google Scholar 

  • Auffarth GU, Rabsilber TM, Kohnen T, Holzer MP (2008) Design and optical principles of multifocal lenses. Ophthalmologe 105:522–526

    Article  CAS  PubMed  Google Scholar 

  • Kohnen T (2008) Multifocal IOL technology: a successful step on the journey toward presbyopia treatment. J Cataract Refract Surg 34:2005

    Article  PubMed  Google Scholar 

  • Alio JL, Plaza-Puche AB, Fernandez-Buenaga R, Pikkel J, Maldonado M (2017) Multifocal intraocular lenses: an overview. Surv Ophthalmol 62:611–634

    Article  PubMed  Google Scholar 

  • Kohnen T, Derhartunian V (2007) Apodized diffractive optic. New concept in multifocal lens technology. Ophthalmologe 104:899–904, 906–897

    Article  CAS  PubMed  Google Scholar 

  • Auffarth GU, Dick HB (2001) Multifokale Intraokularlinsen. Eine Übersicht. Ophthalmologe 98:127–137

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Friedman DS, Cao K, Yusufu M, Zhang J, Wang J, Hou S, Zhu G, Wang B, Xiong Y, Li J, Li X, He H, Wan X (2019) Comparison of postoperative visual performance between bifocal and trifocal intraocular Lens based on randomized controlled trails: a meta-analysis. BMC Ophthalmol 19:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohnen T, Titke C, Bohm M (2016) Trifocal intraocular lens implantation to treat visual demands in various distances following lens removal. Am J Ophthalmol 161:71–77.e71

    Article  PubMed  Google Scholar 

  • Kohnen T, Herzog M, Hemkeppler E, Schonbrunn S, De Lorenzo N, Petermann K, Bohm M (2017) Visual performance of a quadrifocal (trifocal) intraocular lens following removal of the crystalline lens. Am J Ophthalmol 184:52–62

    Article  PubMed  Google Scholar 

  • Steinwender G, Schwarz L, Bohm M, Slavik-Lencova A, Hemkeppler E, Shajari M, Kohnen T (2018) Visual results after implantation of a trifocal intraocular lens in high myopes. J Cataract Refract Surg 44:680–685

    Article  PubMed  Google Scholar 

  • Kohnen T, Hemkeppler E, Herzog M, Schonbrunn S, DeLorenzo N, Petermann K, Bohm M (2018) Visual outcomes after implantation of a segmental refractive multifocal intraocular lens following cataract surgery. Am J Ophthalmol 191:156–165

    Article  PubMed  Google Scholar 

  • Bohm M, Hemkeppler E, Herzog M, Schonbrunn S, de’Lorenzo N, Petermann K, Kohnen T (2018) Comparison of a panfocal and trifocal diffractive intraocular lens after femtosecond laser-assisted lens surgery. J Cataract Refract Surg 44:1454–1462

    Article  PubMed  Google Scholar 

  • Cochener B, Vryghem J, Rozot P, Lesieur G, Heireman S, Blanckaert JA, Van Acker E, Ghekiere S (2012) Visual and refractive outcomes after implantation of a fully diffractive trifocal lens. Clin Ophthalmol 6:1421–1427

    Article  PubMed  PubMed Central  Google Scholar 

  • Khoramnia R, Yildirim TM, Tandogan T, Liebing S, Łabuz G, Choi CY, Auffarth G (2018) Optical quality of three trifocal intraocular lens models: An optical bench comparison. Ophthalmologe 115:21–28

    Article  CAS  PubMed  Google Scholar 

  • Gyory JF, Madár E, Srinivasan S (2019) Implantation of a diffractive-refractive trifocal intraocular lens with centralized diffractive rings: two-year results. J Cataract Refract Surg 45:639–646

    Article  PubMed  Google Scholar 

  • Fernández J, Rodríguez-Vallejo M, Martínez J, Tauste A, Piñero DP (2019) Standard clinical outcomes with a new low addition trifocal Intraocular lens. J Refract Surg 35:214–221

    Article  PubMed  Google Scholar 

  • Shoji N, Shimizu K (2002) Binocular function of the patient with the refractive multifocal intraocular lens. J Cataract Refract Surg 28:1012–1017

    Article  PubMed  Google Scholar 

  • Alio JL, Plaza-Puche AB, Javaloy J, Ayala MJ, Moreno LJ, Pinero DP (2012) Comparison of a new refractive multifocal intraocular lens with an inferior segmental near add and a diffractive multifocal intraocular lens. Ophthalmology 119:555–563

    Article  PubMed  Google Scholar 

  • Alio JL, Plaza-Puche AB, Javaloy J, Ayala MJ, Vega-Estrada A (2013) Clinical and optical intraocular performance of rotationally asymmetric multifocal IOL plate-haptic design versus C-loop haptic design. J Refract Surg 29:252–259

    Article  PubMed  Google Scholar 

  • Berrow EJ, Wolffsohn JS, Bilkhu PS, Dhallu S (2014) Visual performance of a new bi-aspheric, segmented, asymmetric multifocal IOL. J Refract Surg 30:584–588

    Article  PubMed  Google Scholar 

  • Böhm M, Petermann K, Hemkeppler E, Kohnen T (2019) Defocus curves of 4 presbyopia-correcting IOL designs: Diffractive panfocal, diffractive trifocal, segmental refractive, and extended-depth-of-focus. J Cataract Refract Surg 45(11):1625–1636

    Article  PubMed  Google Scholar 

  • Rosen E, Alio JL, Dick HB, Dell S, Slade S (2016) Efficacy and safety of multifocal intraocular lenses following cataract and refractive lens exchange: metaanalysis of peer-reviewed publications. J Cataract Refract Surg 42:310–328

    Article  PubMed  Google Scholar 

  • Tarib I, Kasier I, Herbers C, Hagen P, Breyer D, Kaymak H, Klabe K, Lucchesi R, Teisch S, Diakonis VF, Hahn U, Fabian H, Kretz FTA (2019) Comparison of visual outcomes and patient satisfaction after bilateral implantation of an EDOF IOL and a mix-and-match approach. J Refract Surg 35:408–416

    Article  PubMed  Google Scholar 

  • Kohnen T, Böhm M, Hemkeppler E, Schönbrunn S, DeLorenzo N, Petermann K, Herzog M (2019) Visual performance of an extended depth of focus intraocular lens for treatment selection. Eye 33(10):1556–1563

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogarty DT, Russell DJ, Ward BM, Dewhurst N, Burt P (2018) Comparing visual acuity, range of vision and spectacle independence in the extended range of vision and monofocal intraocular lens. Clin Exp Ophthalmol 46:854–860

    Article  PubMed  Google Scholar 

  • Webers VSC, Bauer NJC, Saelens IEY, Creten OJM, Berendschot TTJM, van den Biggelaar FJHM, Nuijts RMMA (2020) Comparison of the intermediate distance of a trifocal IOL with an extended depth-of-focus IOL: results of a prospective randomized trial. J Cataract Refract Surg 46:193–203

    Article  PubMed  Google Scholar 

  • Cochener B, Boutillier G, Lamard M, Auberger-Zagnoli C (2018) A comparative evaluation of a new generation of diffractive trifocal and extended depth of focus Intraocular lenses. J Refract Surg 34:507–514

    Article  PubMed  Google Scholar 

  • Auffarth GU, Moraru O, Munteanu M, Tognetto D, Bordin P, Belucci R, Khoramnia R, Son H-S (2020) European, multicenter, prospective, non-comparative clinical evaluation of an extended depth of focus intraocular lens. J Refract Surg 36:426–434

    Article  PubMed  Google Scholar 

  • Lubiński W, Podborączyńska-Jodko K, Kirkiewicz M, Mularczyk M, Post M (2020) Comparison of visual outcomes after implantation of AtLisa tri 839 MP and Symfony intraocular lenses. Int Ophthalmol 40(10):2553–2562

    Article  PubMed  PubMed Central  Google Scholar 

  • McNeely RN, Moutari S, Palme C, Moore JE (2020) Visual outcomes and subjective experience after combined implantation of extended depth of focus and trifocal IOLs. J Refract Surg 36:326–333

    Article  PubMed  Google Scholar 

  • Savini G, Schiano-Lomoriello D, Balducci N, Barboni P (2018) Visual performance of a new extended depth-of-focus Intraocular lens compared to a distance-dominant diffractive multifocal intraocular lens. J Refract Surg 34:228–235

    Article  PubMed  Google Scholar 

  • Hammond MD, Potvin R (2019) Visual outcomes, visual quality and patient satisfaction: comparing a blended bifocal approach to bilateral extended depth of focus intraocular lens implantation. Clin Ophthalmol 13:2325–2332

    Article  PubMed  PubMed Central  Google Scholar 

  • Torun Acar B, Duman E, Simsek S (2016) Clinical outcomes of a new diffractive trifocal intraocular lens with Enhanced Depth of Focus (EDOF). BMC Ophthalmol 16:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Ang RE (2020) Visual performance of a small-aperture Intraocular lens: first comparison of results after contralateral and bilateral implantation. J Refract Surg 36:12–19

    Article  PubMed  Google Scholar 

  • Shajari M, Mackert MJ, Langer J, Kreutzer T, Wolf A, Kohnen T, Priglinger S, Mayer WJ (2020) Safety and efficacy of a small-aperture capsular bag-fixated intraocular lens in eyes with severe corneal irregularities. J Cataract Refract Surg 46:188–192

    Article  PubMed  Google Scholar 

  • Pedrotti E, Chierego C, Talli PM, Selvi F, Galzignato A, Neri E, Barosco G, Montresor A, Rodella A, Marchini G (2020) Extended depth of focus versus monofocal IOLs: objective and subjective visual outcomes. J Refract Surg 36:214–222

    Article  PubMed  Google Scholar 

  • Helmholtz H (1855) Ueber die Accommodation des Auges. Arch Ophthalmol 1:1–74

    Google Scholar 

  • Vilupuru S, Lin L, Pepose JS (2015) Comparison of contrast sensitivity and through focus in small-aperture inlay, accommodating Intraocular lens, or multifocal intraocular lens subjects. Am J Ophthalmol 160:150–162.e151

    Article  PubMed  Google Scholar 

  • Alio JL, Simonov A, Plaza-Puche AB, Angelov A, Angelov Y, van Lawick W, Rombach M (2016) Visual outcomes and accommodative response of the lumina accommodative intraocular lens. Am J Ophthalmol 164:37–48

    Article  PubMed  Google Scholar 

  • Dhital A, Spalton DJ, Gala KB (2013) Comparison of near vision, intraocular lens movement, and depth of focus with accommodating and monofocal intraocular lenses. J Cataract Refract Surg 39:1872–1878

    Article  PubMed  Google Scholar 

  • Studeny P, Krizova D, Urminsky J (2016) Clinical experience with the WIOL-CF accommodative bioanalogic intraocular lens: Czech national observational registry. Eur J Ophthalmol 26:230–235

    Article  PubMed  Google Scholar 

  • Pallikaris IG, Portaliou DM, Kymionis GD, Panagopoulou SI, Kounis GA (2014) Outcomes after accommodative bioanalogic intraocular lens implantation. J Refract Surg 30:402–406

    Article  PubMed  Google Scholar 

  • Marques EF, Castanheira-Dinis A (2014) Clinical performance of a new aspheric dual-optic accommodating intraocular lens. Clin Ophthalmol 8:2289–2295

    Article  PubMed  PubMed Central  Google Scholar 

  • Donmez O, Asena BS, Kaskaloglu M, Akova YA (2020) Patients satisfaction and clinical outcomes of binocular implantation of a new trifocal intraocular lens. Int Ophthalmol 40:1069–1075

    Article  PubMed  Google Scholar 

  • Böhm M, Hemkeppler E, Herzog M, Schönbrunn S, de’Lorenzo N, Petermann K, Kohnen T (2018) Comparison of a panfocal and trifocal diffractive intraocular lens after femtosecond laser-assisted lens surgery. J Cataract Refract Surg 44:1454–1462

    Article  PubMed  Google Scholar 

  • Jonker SM, Bauer NJ, Makhotkina NY, Berendschot TT, van den Biggelaar FJ, Nuijts RM (2015) Comparison of a trifocal intraocular lens with a +3.0 D bifocal IOL: results of a prospective randomized clinical trial. J Cataract Refract Surg 41:1631–1640

    Article  PubMed  Google Scholar 

  • Kohnen T, Titke C, Böhm M (2016) Trifocal Intraocular lens implantation to treat visual demands in various distances following lens removal. Am J Ophthalmol 161:71–77.e71

    Article  PubMed  Google Scholar 

  • Gundersen KG (2018) Rotational stability and visual performance 3 months after bilateral implantation of a new toric extended range of vision intraocular lens. Clin Ophthalmol 12:1269–1278

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosa AM, Miranda ÂC, Patrício MM, McAlinden C, Silva FL, Castelo-Branco M, Murta JN (2017) Functional magnetic resonance imaging to assess neuroadaptation to multifocal intraocular lenses. J Cataract Refract Surg 43:1287–1296

    Article  PubMed  Google Scholar 

  • Oliveira RF, Vargas V, Plaza-Puche AB, Alió JL (2020) Long-term results of a diffractive trifocal intraocular lens: Visual, aberrometric and patient satisfaction results. Eur J Ophthalmol 30:201–208

    Article  PubMed  Google Scholar 

  • Coco-Martin MB, Valenzuela PL, Maldonado-López MJ, Santos-Lozano A, Molina-Martín A, Piñero DP (2019) Potential of video games for the promotion of neuroadaptation to multifocal intraocular lenses: a narrative review. Int J Ophthalmol 12:1782–1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Dick HB, Gerste RD, Schultz T, Waring 3rd GO (2013) Capsulotomy or capsulorhexis in femtosecond laser-assisted cataract surgery? J Cataract Refract Surg 39:1442

    PubMed  Google Scholar 

  • Kohnen T (2014) Femtosecond laser capsulotomy. J Cataract Refract Surg 40(12):1947–1948

    Article  PubMed  Google Scholar 

  • Kohnen T (2014) Corneal incisions with femtosecond lasers. J Cataract Refract Surg 40(4):513

    Article  PubMed  Google Scholar 

  • Dick HB, Schultz T (2017) A review of laser-assisted versus traditional phacoemulsification cataract surgery. Ophthalmol Ther 6:7–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolb CM, Shajari M, Mathys L, Herrmann E, Petermann K, Mayer WJ, Priglinger S, Kohnen T (2020) Comparison of femtosecond laser-assisted cataract surgery and conventional cataract surgery: a meta-analysis and systematic review. J Cataract Refract Surg 46(8):1075–1085

    Article  PubMed  Google Scholar 

  • Kohnen T, Klaproth OK, Ostovic M, Hengerer FH, Mayer WJ (2014) Morphological changes in the edge structures following femtosecond laser capsulotomy with varied patient interfaces and different energy settings. Graefes Arch Clin Exp Ophthalmol 252:293–298

    Article  PubMed  Google Scholar 

  • Mayer WJ, Klaproth OK, Ostovic M, Terfort A, Vavaleskou T, Hengerer FH, Kohnen T (2014) Cell death and ultrastructural morphology of femtosecond laser-assisted anterior capsulotomy. Investig Ophthalmol Vis Sci 55:893–898

    Article  Google Scholar 

  • Schultz T, Tsiampalis N, Dick HB (2017) Laser-assisted capsulotomy centration: a prospective trial comparing pupil versus OCT-based scanned capsule centration. J Refract Surg 33:74–78

    Article  PubMed  Google Scholar 

  • Löffler F, Böhm M, Herzog M, Petermann K, Kohnen T (2017) Tomographic analysis of anterior and posterior and total corneal refractive power changes after femtosecond laser-assisted keratotomy. Am J Ophthalmol 180:102–109

    Article  PubMed  Google Scholar 

  • Mayer WJ, Klaproth OK, Hengerer FH, Kohnen T (2014) Impact of crystalline lens opacification on effective phacoemulsification time in femtosecond laser-assisted cataract surgery. Am J Ophthalmol 157:426–432.e1

    Article  CAS  PubMed  Google Scholar 

  • Shajari M, Khalil S, Mayer WJ, Al-Khateeb G, Böhm M, Petermann K, Hemkeppler E, Kohnen T (2017) Comparison of 2 laser fragmentation patterns used in femtosecond laser-assisted cataract surgery. J Cataract Refract Surg 43:1571–1574

    Article  PubMed  Google Scholar 

  • Mayer WJ, Klaproth OK, Ostovic M, Hengerer FH, Kohnen T (2014) Femtosecond laser-assisted lens surgery depending on interface design and laser pulse energy: results of the first 200 cases. Ophthalmologe 111:1172–1177

    Article  CAS  PubMed  Google Scholar 

  • Lee ES, Lee SY, Jeong SY, Moon YS, Chin HS, Cho SJ, Oh JH (2005) Effect of postoperative refractive error on visual acuity and patient satisfaction after implantation of the Array multifocal intraocular lens. J Cataract Refract Surg 31:1960–1965

    Article  PubMed  Google Scholar 

  • Wielders LHP, Schouten JSAG, Winkens B, van den Biggelaar FJHM, Veldhuizen CA, Findl O, Murta JCN, Goslings WRO, Tassignon M-J, Joosse MV, Henry YP, Rulo AHF, Güell JL, Amon M, Kohnen T, Nuijts RMMA, Group EPS (2018) European multicenter trial of the prevention of cystoid macular edema after cataract surgery in nondiabetics: ESCRS PREMED study report 1. J Cataract Refract Surg 44:429–439

    Article  PubMed  Google Scholar 

  • Flach AJ, Dolan BJ, Irvine AR (1987) Effectiveness of ketorolac tromethamine 0.5 % ophthalmic solution for chronic aphakic and pseudophakic cystoid macular edema. Am J Ophthalmol 103:479–486

    Article  CAS  PubMed  Google Scholar 

  • Flach AJ, Jampol LM, Weinberg D, Kraff MC, Yannuzzi LA, Campo RV, Neumann AC, Cupples HP, Lefler WH, Pulido JS (1991) Improvement in visual acuity in chronic aphakic and pseudophakic cystoid macular edema after treatment with topical 0.5 % ketorolac tromethamine. Am J Ophthalmol 112:514–519

    Article  CAS  PubMed  Google Scholar 

  • Gass JD, Norton EW (1966) Cystoid macular edema and papilledema following cataract extraction. A fluorescein fundoscopic and angiographic study. Arch Ophthalmol 76:646–661

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan S, Baskaran P, Talwar B, Venkatesh R (2015) Prospective, randomized study comparing the effect of 0.1 % nepafenac and 0.4 % ketorolac tromethamine on macular thickness in cataract surgery patients with low risk for Cystoid macular edema. Asia Pac J Ophthalmol 4:216–220

    Article  CAS  Google Scholar 

  • Yavas GF, Oztürk F, Küsbeci T (2007) Preoperative topical indomethacin to prevent pseudophakic cystoid macular edema. J Cataract Refract Surg 33:804–807

    Article  PubMed  Google Scholar 

  • Rossetti L, Chaudhuri J, Dickersin K (1998) Medical prophylaxis and treatment of cystoid macular edema after cataract surgery. The results of a meta-analysis. Ophthalmology 105:397–405

    Article  CAS  PubMed  Google Scholar 

  • Campochiaro PA, Han YS, Mir TA, Kherani S, Hafiz G, Krispel C, Liu TYA, Wang J, Scott AW, Zimmer-Galler I (2017) Increased frequency of topical steroids provides benefit in patients with recalcitrant postsurgical macular edema. Am J Ophthalmol 178:163–175

    Article  CAS  PubMed  Google Scholar 

  • Wittpenn JR, Silverstein S, Heier J, Kenyon KR, Hunkeler JD, Earl M, Group ALfCMEAS (2008) A randomized, masked comparison of topical ketorolac 0.4 % plus steroid vs steroid alone in low-risk cataract surgery patients. Am J Ophthalmol 146:554–560

    Article  CAS  PubMed  Google Scholar 

  • Juthani VV, Clearfield E, Chuck RS (2017) Non-steroidal anti-inflammatory drugs versus corticosteroids for controlling inflammation after uncomplicated cataract surgery. Cochrane Database Syst Rev 7:CD10516

    PubMed  Google Scholar 

  • Gower EW, Lindsley K, Tulenko SE, Nanji AA, Leyngold I, McDonnell PJ (2017) Perioperative antibiotics for prevention of acute endophthalmitis after cataract surgery. Cochrane Database Syst Rev 2:CD6364

    PubMed  Google Scholar 

  • Huang J, Wang X, Chen X, Song Q, Liu W, Lu L (2016) Perioperative antibiotics to prevent acute endophthalmitis after ophthalmic surgery: a systematic review and meta-analysis. PLoS ONE 11:e166141

    Article  PubMed  PubMed Central  Google Scholar 

  • Haripriya A, Chang DF, Ravindran RD (2019) Endophthalmitis reduction with intracameral moxifloxacin in eyes with and without surgical complications: Results from 2 million consecutive cataract surgeries. J Cataract Refract Surg 45:1226–1233

    Article  PubMed  Google Scholar 

  • Moser CL, Lecumberri Lopez M, Garat M, Martín-Baranera M (2019) Prophylactic intracameral cefazolin and postoperative topical moxifloxacin after cataract surgery: endophthalmitis risk reduction and safety results in a 16-year study. Graefes Arch Clin Exp Ophthalmol 257:2185–2191

    Article  CAS  PubMed  Google Scholar 

  • Rathi VM, Sharma S, Das T, Khanna RC (2020) Endophthalmitis prophylaxis study. Report 1: Intracameral cefuroxime and moxifloxacin prophylaxis for the prevention of postcataract endophthalmitis in rural India. Indian J Ophthalmol 68:819–824

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma X, Xie L, Huang Y (2020) Intraoperative cefuroxime irrigation prophylaxis for acute-onset endophthalmitis after phacoemulsification surgery. Infect Drug Resist 13:1455–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietilä J, Huhtala A, Mäkinen P, Nättinen J, Rajala T, Salmenhaara K, Uusitalo H (2018) Uncorrected visual acuity, postoperative astigmatism, and dry eye symptoms are major determinants of patient satisfaction: a comparative, real-life study of femtosecond laser in situ keratomileusis and small incision lenticule extraction for myopia. Clin Ophthalmol 12:1741–1755

    Article  PubMed  PubMed Central  Google Scholar 

  • Gayton JL, Sanders VN (1993) Implanting two posterior chamber intraocular lenses in a case of microphthalmos. J Cataract Refract Surg 19:776–777

    Article  CAS  PubMed  Google Scholar 

  • Linz K, Auffarth GU, Kretz FT (2014) Implantation of a sulcus-fixated toric additive intraocular lens in a case of high astigmatism after a triple procedure. Klin Monbl Augenheilkd 231:788–792

    CAS  PubMed  Google Scholar 

  • Gayton JL, Apple DJ, Peng Q, Visessook N, Sanders V, Werner L, Pandey SK, Escobar-Gomez M, Hoddinott DS, Van Der Karr M (2000) Interlenticular opacification: clinicopathological correlation of a complication of posterior chamber piggyback intraocular lenses. J Cataract Refract Surg 26:330–336

    Article  CAS  PubMed  Google Scholar 

  • Manzouri B, Dari M, Claoue C (2017) Supplementary IOLs: monofocal and multifocal, their applications and limitations. Asia Pac J Ophthalmol 6:358–363

    Google Scholar 

  • Mejía LF (1999) Piggyback posterior chamber multifocal intraocular lenses in anisometropia. J Cataract Refract Surg 25:1682–1684

    Article  PubMed  Google Scholar 

  • Thomas BC, Auffarth GU, Reiter J, Holzer MP, Rabsilber TM (2013) Implantation of three-piece silicone toric additive IOLs in challenging clinical cases with high astigmatism. J Refract Surg 29:187–193

    Article  PubMed  Google Scholar 

  • Rabsilber TM, Kretz FT, Holzer MP, Fitting A, Sanchez MJ, Auffarth GU (2012) Bilateral implantation of toric multifocal additive intraocular lenses in pseudophakic eyes. J Cataract Refract Surg 38:1495–1498

    Article  PubMed  Google Scholar 

  • Khoramnia R, Yildirim TM, Son HS, Labuz G, Mayer CS, Auffarth GU (2020) Duet procedure to achieve reversible trifocality. Ophthalmologe 117(10):999–1004

    Article  PubMed  PubMed Central  Google Scholar 

  • Yildirim TM, Auffarth GU, Son HS, Mayer CS, Tandogan T, Khoramnia R (2019) Duet procedure in high myopia to achieve reversible multifocality. Klin Monbl Augenheilkd 237(8):958–960

    PubMed  Google Scholar 

  • Łabuz G, Auffarth GU, Knorz MC, Son H-S, Yildirim TM, Khoramnia R (2020) Trifocality achieved through polypseudophakia: optical quality and light loss compared with a single trifocal intraocular lens. J Refract Surg 36(9):570–577.

    Article  PubMed  Google Scholar 

  • Baur I, Auffarth G, Yildirim T, Mayer C, Khoramnia R (2020) Reversibility of the duet procedure: bilateral exchange of a supplementary trifocal sulcus-fixated intraocular lens for correction of a postoperative refractive error. Am J Ophthalmol Case Rep 20:100957

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohnen T, Kook D, Auffarth GU, Derhartunian V (2008) Use of multifocal intraocular lenses and criteria for patient selection. Ophthalmologe 105:527–532

    Article  CAS  PubMed  Google Scholar 

  • Makhotkina NY, Berendschot TT, Beckers HJ, Nuijts RM (2015) Treatment of negative dysphotopsia with supplementary implantation of a sulcus-fixated intraocular lens. Graefes Arch Clin Exp Ophthalmol 253:973–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makhotkina NY, Dugrain V, Purchase D, Berendschot T, Nuijts R (2018) Effect of supplementary implantation of a sulcus-fixated intraocular lens in patients with negative dysphotopsia. J Cataract Refract Surg 44:209–218

    Article  PubMed  Google Scholar 

  • Srinivasan S (2019) Implantation of Scharioth macula lens in patients with age-related macular degeneration: results of a prospective European multicentre clinical trial. BMJ Open Ophthalmol 4:e322

    Article  PubMed  PubMed Central  Google Scholar 

  • Prager F, Amon M, Wiesinger J, Wetzel B, Kahraman G (2017) Capsular bag-fixated and ciliary sulcus-fixated intraocular lens centration after supplementary intraocular lens implantation in the same eye. J Cataract Refract Surg 43:643–647

    Article  PubMed  Google Scholar 

  • Levinger E, Mimouni M, Finkelman Y, Yatziv Y, Shahar J, Trivizki O (2020) Outcomes of refractive error correction in pseudophakic patients using a sulcus piggyback intraocular lens. Eur J Ophthalmol: 31(2):422–426

    Article  PubMed  Google Scholar 

  • Palomino-Bautista C, Sánchez-Jean R, Carmona Gonzalez D, Domínguez RM, Gómez CA (2020) Spectacle independence for pseudophakic patients – experience with a trifocal supplementary add-on Intraocular lens. Clin Ophthalmol 14:1043–1054

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Feijo J, Saenz-Frances F, Martinez-De-La-Casa JM, Mendez-Hernandez C, Fernandez-Vidal A, Elias-de-Tejada M, Reche-Frutos J, Garcia-Sanchez J (2008) Angle-closure glaucoma after piggyback intraocular lens implantation. Eur J Ophthalmol 18:822–826

    Article  PubMed  Google Scholar 

  • Aristodemou P, Knox Cartwright NE, Sparrow JM, Johnston RL (2011) Reversibility of the duet procedure: bilateral exchange of a supplementary trifocal sulcus-fixated intraocular lens for correction of a postoperative refractive error. J Cataract Refract Surg 37(1):63–71

    Article  PubMed  Google Scholar 

  • Lundstrom M, Manning S, Barry P, Stenevi U, Henry Y, Rosen P (2015) The European registry of quality outcomes for cataract and refractive surgery (EUREQUO): a database study of trends in volumes, surgical techniques and outcomes of refractive surgery. Eye Vis 2:8

    Article  Google Scholar 

  • Lundstrom M, Dickman M, Henry Y et al (2018) Risk factors for refractive error after cataract surgery: analysis of 282 811 cataract extractions reported to the European registry of quality outcomes for cataract and refractive surgery. J Cataract Refract Surg 44(4):447–452

    Article  PubMed  Google Scholar 

  • Norrby S (2008) Sources of error in intraocular lens power calculation. J Cataract Refract Surg 34(3):368–376

    Article  PubMed  Google Scholar 

  • Olsen T (1992) Sources of error in intraocular lens power calculation. J Cataract Refract Surg 18(2):125–129

    Article  CAS  PubMed  Google Scholar 

  • Hirnschall N, Amir-Asgari S, Maedel S, Findl O (2013) Predicting the postoperative intraocular lens position using continuous intraoperative optical coherence tomography measurements. Investig Ophthalmol Vis Sci 54(8):5196–5203

    Article  Google Scholar 

  • Hirnschall N, Farrokhi S, Amir-Asgari S, Hienert J, Findl O (2018) Intraoperative optical coherence tomography measurements of aphakic eyes to predict postoperative position of 2 intraocular lens designs. J Cataract Refract Surg 44(11):1310–1316

    Article  PubMed  Google Scholar 

  • Shajari M, Sonntag R, Niermann T et al (2020) Determining and comparing the effective lens position and refractive outcome of a novel rhexis-fixated lens to established lens designs. Am J Ophthalmol 213:62–68

    Article  PubMed  Google Scholar 

  • Findl O, Hirnschall N, Nishi Y, Maurino V, Crnej A (2015) Capsular bag performance of a hydrophobic acrylic 1-piece intraocular lens. J Cataract Refract Surg 41(1):90–97

    Article  PubMed  Google Scholar 

  • Findl O, Struhal W, Dorffner G, Drexler W (2004) Analysis of nonlinear systems to estimate intraocular lens position after cataract surgery. J Cataract Refract Surg 30(4):863–866

    Article  PubMed  Google Scholar 

  • Kriechbaum K, Findl O, Preussner PR, Koppl C, Wahl J, Drexler W (2003) Determining postoperative anterior chamber depth. J Cataract Refract Surg 29(11):2122–2126

    Article  PubMed  Google Scholar 

  • Wirtitsch MG, Findl O, Menapace R et al (2004) Effect of haptic design on change in axial lens position after cataract surgery. J Cataract Refract Surg 30(1):45–51

    Article  PubMed  Google Scholar 

  • Barrett GD (1993) An improved universal theoretical formula for intraocular lens power prediction. J Cataract Refract Surg 19(6):713–720

    Article  CAS  PubMed  Google Scholar 

  • Darcy K, Gunn D, Tavassoli S, Sparrow J, Kane JX (2020) Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service. J Cataract Refract Surg 46(1):2–7

    PubMed  Google Scholar 

  • Savini G, Hoffer KJ, Balducci N, Barboni P, Schiano-Lomoriello D (2020) Comparison of formula accuracy for intraocular lens power calculation based on measurements by a swept-source optical coherence tomography optical biometer. J Cataract Refract Surg 46(1):27–33

    PubMed  Google Scholar 

  • Kane JX, Van Heerden A, Atik A, Petsoglou C (2017) Accuracy of 3 new methods for intraocular lens power selection. J Cataract Refract Surg 43(3):333–339

    Article  PubMed  Google Scholar 

  • Ladas JG, Siddiqui AA, Devgan U, Jun AS (2015) A 3-D “Super Surface” combining modern intraocular lens formulas to generate a “Super Formula” and maximize accuracy. JAMA Ophthalmol 133(12):1431–1436

    Article  PubMed  Google Scholar 

  • Siddiqui AA, Devgan U (2017) Intraocular lens calculations in atypical eyes. Indian J Ophthalmol 65(12):1289–1293

    Article  PubMed  PubMed Central  Google Scholar 

  • Drexler W, Findl O, Menapace R et al (1998) Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol 126(4):524–534

    Article  CAS  PubMed  Google Scholar 

  • Findl O, Kriechbaum K, Sacu S et al (2003) Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J Cataract Refract Surg 29(10):1950–1955

    Article  PubMed  Google Scholar 

  • Hirnschall N, Murphy S, Pimenides D, Maurino V, Findl O (2011) Assessment of a new averaging algorithm to increase the sensitivity of axial eye length measurement with optical biometry in eyes with dense cataract. J Cataract Refract Surg 37(1):45–49

    Article  PubMed  Google Scholar 

  • Hirnschall N, Varsits R, Doeller B, Findl O (2018) Enhanced penetration for axial length measurement of eyes with dense cataracts using swept source optical coherence tomography: a consecutive observational study. Ophthalmol Ther 7(1):119–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch DD, Ali SF, Weikert MP, Shirayama M, Jenkins R, Wang L (2012) Contribution of posterior corneal astigmatism to total corneal astigmatism. J Cataract Refract Surg 38(12):2080–2087

    Article  PubMed  Google Scholar 

  • Koch DD, Jenkins RB, Weikert MP, Yeu E, Wang L (2013) Correcting astigmatism with toric intraocular lenses: effect of posterior corneal astigmatism. J Cataract Refract Surg 39(12):1803–1809

    Article  PubMed  Google Scholar 

  • Hirnschall N, Crnej A, Gangwani V, Findl O (2012) Effect of fluorescein dye staining of the tear film on Scheimpflug measurements of central corneal thickness. Cornea 31(1):18–20

    Article  PubMed  Google Scholar 

  • Hoffmann PC, Abraham M, Hirnschall N, Findl O (2014) Prediction of residual astigmatism after cataract surgery using swept source fourier domain optical coherence tomography. Curr Eye Res 39(12):1178–1186

    Article  PubMed  Google Scholar 

  • Hirnschall N, Findl O, Bayer N, Leisser C, Norrby S, Zimper E, Hoffmann P (2020) Sources of error in toric intraocular lens power calculation. J Refract Surg 36(10):646–652

    Article  PubMed  Google Scholar 

  • Hirnschall N, Hoffmann PC, Draschl P, Maedel S, Findl O (2014) Evaluation of factors influencing the remaining astigmatism after toric intraocular lens implantation. J Refract Surg 30(6):394–400

    Article  PubMed  Google Scholar 

  • Hirnschall N, Wiesinger J, Draschl P, Findl O (2015) Factors influencing efficacy of peripheral corneal relaxing incisions during cataract surgery. J Ophthalmol 2015:706508

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirnschall N, Buehren T, Bajramovic F, Trost M, Teuber T, Findl O (2017) Prediction of postoperative intraocular lens tilt using swept-source optical coherence tomography. J Cataract Refract Surg 43(6):732–736

    Article  PubMed  Google Scholar 

  • Hayashi K, Hirata A, Manabe S, Hayashi H (2011) Long-term change in corneal astigmatism after sutureless cataract surgery. Am J Ophthalmol 151(5):858–865

    Article  PubMed  Google Scholar 

  • Olsen T, Logstrup N, Olesen H, Corydon L (1993) Using the surgical result in the first eye to calculate intraocular lens power for the second eye. J Cataract Refract Surg 19(1):36–39

    Article  CAS  PubMed  Google Scholar 

  • Brandlhuber U, Haritoglou C, Kreutzer TC, Kook D (2014) Reposition of a misaligned Zeiss AT TORBI 709M(R) intraocular lens 15 months after implantation. Eur J Ophthalmol 24(5):800–802

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kohnen .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kohnen, T. et al. (2023). Refraktive Intraokularchirurgie. In: Kohnen, T. (eds) Refraktive Chirurgie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60946-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60946-0_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60945-3

  • Online ISBN: 978-3-662-60946-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics