Skip to main content
Log in

Optische Qualität nach refraktiver Hornhautchirurgie

Optical quality after refractive corneal surgery

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Die Korrektur von Myopie, Hyperopie und Astigmatismus innerhalb ihres Indikationsbereichs mittels refraktiver Hornhautchirurgie, wie LASIK und Oberflächenablation (z. B. PRK), gehört heute zu den Standardverfahren in der Augenheilkunde. Nachdem Fortschritte im Bereich der operativen Techniken und der apparativen Voraussetzungen eine weitere Steigerung bezüglich Sicherheit und Vorhersagbarkeit erzielt haben, steht nun auch die optische Qualität im Mittelpunkt des wissenschaftlichen Interesses. Die „optische Qualität“ ist kein gut definierter Parameter, sondern kann nur indirekt anhand direkt messbarer Größen verdeutlicht werden. Am Anfang stehen die anatomischen Eigenschaften des Auges, welche die optischen Eindrücke auf retinaler Bildebene bedingen. Die retinale Bildqualität beeinflusst die Funktion, also das Auflösungsvermögen und die Erkennung von Kontrasten. Am Ende steht die subjektive Wahrnehmung eines Seheindrucks. Die subjektive Einschätzung des eigenen Seheindrucks durch den Patienten spiegelt die eigentliche „optische Qualität“ wider. Im Besonderen sind drei Phänomene für die Verringerung der retinalen Abbildungsqualität verantwortlich: Beugung, Aberration und Streuung. Zu den Messmethoden zur Beschreibung der optischen Qualität gehören subjektive Fragebögen, funktionelle Testverfahren zur Messung von Visus- und Kontrastsensitivität, optische Messverfahren zur Bestimmung der optischen Qualität sowie Biomikroskopie, Aberrometrie und korneale Topographie zur Auswertung der anatomischen Veränderung.

Abstract

Correction of myopia, hyperopia and astigmatism within its indicated margin by means of refractive corneal surgical procedures such as LASIK and surface ablation (e.g. PRK) is one of the standard procedures in ophthalmology. Now that advances in the fields of surgical techniques and the technical devices employed have further progressed in terms of safety and predictability, research also focuses on optical quality. “Optical quality” is not a clearly defined parameter, but can be captured indirectly by means of directly measured data. One has to start with the anatomical properties of the eye, which determine the optical images on the retinal level. The quality of the retinal image influences the eye’s function, i.e. acuity and contrast perception. Finally, there is the subjective perception of the image we receive. “Optical quality” as such is reflected by the patient’s evaluation of this image perception. Three phenomena are especially responsible for deterioration of the quality of the retinal image: diffraction, aberrations and dispersion. Some of the methods for measuring optical quality are subjective questionnaires, functional testing procedures for measuring visual acuity and contrast sensitivity, optical measuring procedures for the determination of optical quality, as well as biomicroscopy, aberrometry and corneal topography for assessing anatomical changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Applegate RA, Gansel KA (1990) The importance of pupil size in optical quality measurements following radial keratotomy. Refract Corneal Surg 6:47–54

    PubMed  Google Scholar 

  2. Applegate RA, Howland HC, Sharp RP, Cottingham AJ, Yee RW (1998) Corneal aberrations and visual performance after radial keratotomy. J Refract Surg 14:397–407

    PubMed  Google Scholar 

  3. Applegate RA, Hilmantel G, Howland HC, Tu EY, Starck T, Zayac EJ (2000) Corneal first surface optical aberrations and visual performance. J Refract Surg 16:507–514

    PubMed  Google Scholar 

  4. Applegate RA, Ballentine C, Gross H, Sarver EJ, Sarver CA (2003) Visual acuity as a function of Zernike mode and level of root mean square error. Optom Vis Sci 80:97–105

    PubMed  Google Scholar 

  5. Azar DT, Ang RT, Lee JB et al. (2001) Laser subepithelial keratomileusis: electron microscopy and visual outcomes of flap photorefractive keratectomy. Curr Opin Ophthalmol 12:323–328

    Article  PubMed  Google Scholar 

  6. Bach M (1996) The Freiburg Visual Acuity test — automatic measurement of visual acuity. Optom Vis Sci 73:49–53

    PubMed  Google Scholar 

  7. Bailey MD, Mitchell GL, Dhaliwal DK, Boxer Wachler BS, Zadnik K (2003) Patient satisfaction and visual symptoms after laser in situ keratomileusis. Ophthalmology 110:1371–1378

    PubMed  Google Scholar 

  8. Brunette I, Gresset J, Boivin JF, Pop M, Thompson P, Lafond GP, Makni H (2000) Functional outcome and satisfaction after photorefractive keratectomy. Part 2: survey of 690 patients. Ophthalmology 107:1790–1796

    Article  PubMed  Google Scholar 

  9. Campbell CE (2004) Improving visual function diagnostics with the use of higher-order information from metrics. J Refract Surg 20:495–503

    Google Scholar 

  10. Chalita MR, Chavala S, Xu M, Krueger RR (2004) Wavefront analysis in post-LASIK eyes and its correlation with visual symptoms, refraction, and topography. Ophthalmology 111:447–453

    Article  PubMed  Google Scholar 

  11. Chen L, Singer B, Guirao A, Porter J, Williams DR (2005) Image metrics for predicting subjective image quality. Optom Vis Sci 82:358–369

    Article  PubMed  Google Scholar 

  12. Cichocki M, Kohnen T (2005) Vergleich der Kontrastsensitivität vor und nach sekundärer optischer Zonenvergrößerung mittels der „optimized refraktiv keratectomy“ (ORK) 19. Kongressband der Deutschsprachigen Gesellschaft für Intraokularlinsen-Implantate und refraktive Chirurgie. Köln, Biermann: 205–209

  13. Eiferman RA, O’Neill KP, Forgey DR, Cook YD (1991) Excimer laser photorefractive keratectomy for myopia: six-month results. Refract Corneal Surg 7:344–347

    PubMed  Google Scholar 

  14. Elliott DB, Bullimore MA (1993) Assessing the reliability, discriminative ability, and validity of disability glare tests. Invest Ophthalmol Vis Sci 34:108–119

    PubMed  Google Scholar 

  15. Endl MJ, Martinez CE, Klyce SD, McDonald MB, Coorpender SJ, Applegate RA, Howland HC (2001) Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy. Arch Ophthalmol 119:1159–1164

    PubMed  Google Scholar 

  16. Farah SG, Azar DT, Gurdal C, Wong J (1998) Laser in situ keratomileusis: literature review of a developing technique. J Cataract Refract Surg 24:989–1006

    PubMed  Google Scholar 

  17. Fraenkel G, Comaish F, Lawless MA et al. (2004) Development of a questionnaire to assess subjective vision score in myopes seeking refractive surgery. J Refract Surg 20:10–19

    PubMed  Google Scholar 

  18. Fujikado T, Kuroda T, Maeda N et al. (2004) Light scattering and optical aberrations as objective parameters to predict visual deterioration in eyes with cataracts. J Cataract Refract Surg 30:1198–1208

    Article  PubMed  Google Scholar 

  19. Ghaith AA, Daniel J, Stulting RD, Thompson KP, Lynn M (1998) Contrast sensitivity and glare disability after radial keratotomy and photorefractive keratectomy. Arch Ophthalmol 116:12–18

    PubMed  Google Scholar 

  20. Hammond SD, Puri AK, Ambati BK (2004) Quality of vision and patient satisfaction after LASIK. Curr Opin Ophthalmol 15:328–332

    Article  PubMed  Google Scholar 

  21. Haw WW, Manche EE (2001) Effect of preoperative pupil measurements on glare, halos and visual function after photoastigmatic refractive keratectomy. J Cataract Refract Surg 27:907–916

    Article  PubMed  Google Scholar 

  22. Hersh PS, Steinert RF, Brint SF (2000) Photorefractive keratectomy versus laser in situ keratomileusis: comparison of optical side effects. Summit PRK-LASIK Study Group. Ophthalmology 107:925–933

    Article  PubMed  Google Scholar 

  23. Holladay JT, Dudeja DR, Chang J (1999) Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing, and corneal topography. J Cataract Refract Surg 25:663–669

    Article  PubMed  Google Scholar 

  24. Kohnen T (2001) Measuring vision in refractive surgery (editorial). J Cataract Refract Surg 27:1897–1898

    Article  PubMed  Google Scholar 

  25. Kohnen T, Bühren J (2004) Derzeitiger Stand der wellenfrontgeführten Hornhautchirurgie zur Korrektur von Refraktionsfehlern. Ophthalmologe 101:631–645; quiz 646–647

    PubMed  Google Scholar 

  26. Kohnen T, Steinkamp GW, Schnitzler EM et al. (2001) Laser-in-situ-Keratomileusis (LASIK) mit superiorem Hinge und Scanningspot-Excimerlaserablation zur Korrektur von Myopie und myopem Astigmatismus. Ophthalmologe 98:1044–1054

    Article  PubMed  Google Scholar 

  27. Kohnen T, Mirshahi A, Cichocki M, Bühren J, Steinkamp GW (2003) Laser-in-situ-Keratomileusis zur Korrektur von Hyperopie und hyperopem Astigmatismus. Ophthalmologe 100:1071–1078

    Article  PubMed  Google Scholar 

  28. Kohnen T, Bühren J, Kühne C, Mirshahi A (2004) Wavefront-guided LASIK with the Zyoptix 3.1 system for the correction of myopia and compound myopic astigmatism with 1-year follow-up: clinical outcome and change in higher order aberrations. Ophthalmology 111:2175–2185

    Article  PubMed  Google Scholar 

  29. Kohnen T, Bühren J, Kasper T, Terzi E (2005) Quality of vision after refractive surgery. In: Kohnen T, Koch DD (eds) Cataract and Refractive Surgery. In: Krieglstein GK, Weinreb RN (eds) Essentials in Ophthalmology. Springer, Berlin Heidelberg New York Tokio, pp 303–314

  30. Lee YC, Hu FR, Wang IJ (2003) Quality of vision after laser in situ keratomileusis: influence of dioptric correction and pupil size on visual function. J Cataract Refract Surg 29:769–777

    Article  PubMed  Google Scholar 

  31. Lohmann C, Guell J (1998) Regression after LASIK for the treatment of myopia: the role of the corneal epithelium. Semin Ophthalmol 13:79–82

    PubMed  Google Scholar 

  32. McLeod SD (2001) Beyond snellen acuity. The assessment of visual function after refractive surgery (editorial). Arch Ophthalmol 119:1371–1373

    PubMed  Google Scholar 

  33. Moller-Pedersen T (2004) Keratocyte reflectivity and corneal haze. Exp Eye Res 78:553–560

    Article  PubMed  Google Scholar 

  34. Moller-Pedersen T, Cavanagh HD, Petroll WM, Jester JV (1998) Corneal haze development after PRK is regulated by volume of stromal tissue removal. Cornea 17:627–639

    Article  PubMed  Google Scholar 

  35. Moller-Pedersen T, Cavanagh HD, Petroll WM, Jester JV (2000) Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy: a 1-year confocal microscopic study. Ophthalmology 107:1235–1245

    Article  PubMed  Google Scholar 

  36. Mutyala S, McDonald MB, Scheinblum KA, Ostrick MD, Brint SF, Thompson H (2000) Contrast sensitivity evaluation after laser in situ keratomileusis. Ophthalmology 107:1864–1867

    Article  PubMed  Google Scholar 

  37. O’Brart DP, Corbett MC, Verma S et al. (1996) Effects of ablation diameter, depth, and edge contour on the outcome of photorefractive keratectomy. J Refract Surg 12:50–60

    PubMed  Google Scholar 

  38. Pallikaris IG, Papatzanaki ME, Stathi EZ, Frenschock O, Georgiadis A (1990) Laser in situ keratomileusis. Lasers Surg Med 10:463–468

    PubMed  Google Scholar 

  39. Pallikaris IG, Naoumidi II, Kalyvianaki MI, Katsanevaki VJ (2003) Epi-LASIK: comparative histological evaluation of mechanical and alcohol-assisted epithelial separation. J Cataract Refract Surg 29:1496–1501

    Article  PubMed  Google Scholar 

  40. Pesudovs K, Hazel CA, Doran RML, Elliott DB (2004) The usefullness of Vistech and FACT contrast sensitivity charts for cataract and refractive surgery outcomes research. Br J Ophthalmol 88:11–16

    Article  PubMed  Google Scholar 

  41. Pomerance GN, Evans DW (1994) Test-retest reliability of the CSV-1000 contrast test and its relationship to glaucoma therapy. Invest Ophthalmol Vis Sci 35:3357–3361

    PubMed  Google Scholar 

  42. Pop M, Payette Y (2004) Risk factors for night vision complaints after LASIK for myopia. Ophthalmology 111:3–10

    Article  PubMed  Google Scholar 

  43. Quesnel NM, Lovasik JV, Ferremi C, Boileau M, Ieraci C (2004) Laser in situ keratomileusis for myopia and the contrast sensitivity function. J Cataract Refract Surg 30:1209–1218

    Article  PubMed  Google Scholar 

  44. Rabin J, Wicks J (1996) Measuring resolution in the contrast domain: the small letter contrast test. Optom Vis Sci 73:398–403

    PubMed  Google Scholar 

  45. Roberts C (2002) Biomechanics of the cornea and wavefront-guided laser refractive surgery. J Refract Surg 18:589–592

    Google Scholar 

  46. Schallhorn SC, Kaupp SE, Tanzer DJ, Tidwell J, Laurent J, Bourque LB (2003) Pupil size and quality of vision after LASIK. Ophthalmology 110:1606–1614

    Article  PubMed  Google Scholar 

  47. Seiler T, McDonnell PJ (1995) Excimer Laser Photorefractive Keratectomy (Major Review). Surv Ophthalmol 40:89–118

    Article  PubMed  Google Scholar 

  48. Seiler T, Reckmann W, Maloney RK (1993) Effective spherical aberration of the cornea as a quantitative descriptor in corneal topography. J Cataract Refract Surg 19 [Suppl]:155–165

    PubMed  Google Scholar 

  49. Solomon KD, Holzer MP, Sandoval HP et al. (2002) Refractive Surgery Survey 2001. J Cataract Refract Surg 28:346–355

    Article  PubMed  Google Scholar 

  50. Terzi E, Bühren J, Wesemann W, Kohnen T (2005) Das „Frankfurt-Freiburg Contrast and Acuity Test System“ (FF-CATS): Ein neuer Test zur Kontrastsensitivitätsbestimmung unter variablen Beleuchtungs- und Blendbedingungen. [Frankfurt-Freiburg Contrast and Acuity Test System (FF-CATS). A new test to determine contrast sensitivity under variable ambient and glare luminance levels]. Ophthalmologe 102:507–513

    Article  PubMed  Google Scholar 

  51. Thibos LN (2004) Unresolved issues in the prediction of subjective refraction from wavefront aberration maps. J Refract Surg 20:533–536

    Google Scholar 

  52. van den Berg TJ (1991) On the relation between glare and straylight. Doc Ophthalmol 78:177–181

    Article  PubMed  Google Scholar 

  53. van den Berg TJTP, IJspeert JK (1992) Clinical assessment of intraocular stray light. Appl Opt 31:3694–3966

    Google Scholar 

  54. van Rijn LJ, Nischler C, Gamer D et al. (2005) Measurement of stray light and glare: comparison of Nyktotest, Mesotest, stray light meter, and computer implemented stray light meter. Br J Ophthalmol 89:345–351

    Article  PubMed  Google Scholar 

  55. Vetrugno M, Quaranta GM, Maino A, Mossa F, Cardia L (2000) Contrast sensitivity measured by 2 methods after photorefractive keratectomy. J Cataract Refract Surg 26:847–852

    Article  PubMed  Google Scholar 

  56. Wesemann W (2002) Sehschärfebestimmung mit dem Freiburger Visustest, Bailey-Lovie-Tafel und Landoltring-Tafel. Klin Monatsbl Augenheilkd 219:660–667

    Article  PubMed  Google Scholar 

  57. Yamane N, Miyata K, Samejima T et al. (2004) Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis. Invest Ophthalmol Vis Sci 45:3986–3990

    Article  PubMed  Google Scholar 

  58. Yoon G, Macrae S, Williams DR, Cox IG (2005) Causes of spherical aberration induced by laser refractive surgery. J Cataract Refract Surg 31:127–135

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kohnen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohnen, T., Bühren, J., Cichocki, M. et al. Optische Qualität nach refraktiver Hornhautchirurgie. Ophthalmologe 103, 184–191 (2006). https://doi.org/10.1007/s00347-006-1315-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-006-1315-x

Schlüsselwörter

Keywords

Navigation