Skip to main content

Emerging Biological Approaches to Muscle Injuries

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

Muscle injuries are frequent among athletes and are an ever-growing challenge to medical staff. In order to achieve a quick yet full recovery, there is a continuous search for treatments to improve and accelerate muscle healing. A number of interventions have been proposed. In this chapter, we will cover the basics of muscle healing and discuss emerging therapies with current scientific evidence on their efficacy and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edouard P, Branco P, Alonso J-M. Muscle injury is the principal injury type and hamstring muscle injury is the first injury diagnosis during top-level international athletics championships between 2007 and 2015. Br J Sports Med. 2016;50:619–30.

    Article  PubMed  Google Scholar 

  2. Ekstrand J, Hagglund M, Walden M. Epidemiology of muscle injuries in Professional Football (Soccer). Am J Sports Med. 2011;39:1226–32.

    Article  PubMed  Google Scholar 

  3. Hrysomallis C. Injury incidence, risk factors and prevention in Australian Rules Football. Sports Med. 2013;43:339–54.

    Article  PubMed  Google Scholar 

  4. Murphy JC, O’Malley E, Gissane C, Blake C. Incidence of injury in gaelic football: a 4-year prospective study. Am J Sports Med. 2012;40:2113–20.

    Article  PubMed  Google Scholar 

  5. Orchard JW, Seward H, Orchard JJ. Results of 2 decades of injury surveillance and public release of data in the Australian Football League. Am J Sports Med. 2013;41:734–41.

    Article  PubMed  Google Scholar 

  6. Ekstrand J, Hagglund M, Kristenson K, Magnusson H, Walden M. Fewer ligament injuries but no preventive effect on muscle injuries and severe injuries: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47:732–7.

    Article  PubMed  Google Scholar 

  7. Ekstrand J, Waldén M, Hägglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study. Br J Sports Med. 2016;50:731–7.

    Article  PubMed  Google Scholar 

  8. Hagglund M, Walden M, Magnusson H, Kristenson K, Bengtsson H, Ekstrand J. Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47:738–42.

    Article  PubMed  Google Scholar 

  9. Wangensteen A, Tol JL, Witvrouw E, Van Linschoten R, Almusa E, Hamilton B, Bahr R. Hamstring reinjuries occur at the same location and early after return to sport: a descriptive study of MRI-confirmed reinjuries. Am J Sports Med. 2016;44(8):2112–21.

    Article  PubMed  Google Scholar 

  10. Brooks JHM. Incidence, risk, and prevention of hamstring muscle injuries in professional Rugby Union. Am J Sports Med. 2006;34:1297–306.

    Article  PubMed  Google Scholar 

  11. de Visser H, Reijman M, Heijboer M, Bos P. Risk factors of recurrent hamstring injuries: a systematic review. Br J Sports Med. 2012;46:124–30.

    Article  PubMed  Google Scholar 

  12. Gharaibeh B, Chun-Lansinger Y, Hagen T, Ingham SJM, Wright V, Fu F, Huard J. Biological approaches to improve skeletal muscle healing after injury and disease. Birth Defects Res C Embryo Today. 2012;96:82–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huard J, Li Y, Fu F. Muscle injuries and repair: current trends in research. J Bone Joint Surg Am. 2002;84-A:822–32.

    Article  PubMed  Google Scholar 

  14. Dumont NA, Bentzinger CF, Sincennes M-C, Rudnicki MA. Satellite cells and skeletal muscle regeneration. In: Terjung R, editor. Compr Physiol. Hoboken: Wiley; 2015. p. 1027–59.

    Chapter  Google Scholar 

  15. Charge SBP. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84:209–38.

    Article  CAS  PubMed  Google Scholar 

  16. Jarvinen TAH. Muscle injuries: biology and treatment. Am J Sports Med. 2005;33:745–64.

    Article  PubMed  Google Scholar 

  17. Järvinen TAH, Järvinen TLN, Kääriäinen M, Äärimaa V, Vaittinen S, Kalimo H, Järvinen M. Muscle injuries: optimising recovery. Best Pract Res Clin Rheumatol. 2007;21:317–31.

    Article  PubMed  Google Scholar 

  18. Järvinen TA, Järvinen M, Kalimo H. Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J. 2013;3:337–45.

    PubMed  Google Scholar 

  19. Järvinen TA, Kääriäinen M, Järvinen M, Kalimo H. Muscle strain injuries. Curr Opin Rheumatol. 2000;12:155–61.

    Article  PubMed  Google Scholar 

  20. Kääriäinen M, Järvinen T, Järvinen M, Rantanen J, Kalimo H. Relation between myofibers and connective tissue during muscle injury repair. Scand J Med Sci Sports. 2000;10:332–7.

    Article  PubMed  Google Scholar 

  21. Tidball JG. Myotendinous junction injury in relation to junction structure and molecular composition. Exerc Sport Sci Rev. 1991;19:419–45.

    Article  CAS  PubMed  Google Scholar 

  22. Rantanen J, Ranne J, Hurme T, Kalimo H. Denervated segments of injured skeletal muscle fibers are reinnervated by newly formed neuromuscular junctions. J Neuropathol Exp Neurol. 1995;54:188–94.

    Article  CAS  PubMed  Google Scholar 

  23. Korthuis RJ. Anatomy of skeletal muscle and its vascular supply. San Rafael: Morgan & Claypool Life Sciences; 2011.

    Google Scholar 

  24. Schmalbruch H, Lewis DM. Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles. Muscle Nerve. 2000;23:617–26.

    Article  CAS  PubMed  Google Scholar 

  25. Baoge L, Van Den Steen E, Rimbaut S, Philips N, Witvrouw E, Almqvist KF, Vanderstraeten G, Vanden Bossche LC. Treatment of skeletal muscle injury: a review. ISRN Orthop. 2012;2012:1–7.

    Article  Google Scholar 

  26. Ciciliot S, Schiaffino S. Regeneration of mammalian skeletal muscle: basic mechanisms and clinical implications. Curr Pharm Des. 2010;16:906–14.

    Article  CAS  PubMed  Google Scholar 

  27. Laumonier T, Menetrey J. Muscle injuries and strategies for improving their repair. J Exp Orthop. 2016;3(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tidball JG. Mechanisms of muscle injury, repair, and regeneration. In: Terjung R, editor. Compr Physiol. Hoboken: Wiley; 2011.

    Google Scholar 

  29. Chazaud B, Brigitte M, Yacoub-Youssef H, Arnold L, Gherardi R, Sonnet C, Lafuste P, Chretien F. Dual and beneficial roles of macrophages during skeletal muscle regeneration. Exerc Sport Sci Rev. 2009;37:18–22.

    Article  PubMed  Google Scholar 

  30. Sánchez M, Anitua E, Delgado D, Sánchez P, Orive G, Padilla S. Muscle repair: platelet-rich plasma derivates as a bridge from spontaneity to intervention. Injury. 2014;45:S7–S14.

    Article  PubMed  Google Scholar 

  31. Tidball JG. Inflammatory processes in muscle injury and repair. AJP Regul Integr Comp Physiol. 2004;288:R345–53.

    Article  Google Scholar 

  32. Toumi H, F’guyer S, Best TM. The role of neutrophils in injury and repair following muscle stretch. J Anat. 2006;208:459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204:1057–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saclier M, Yacoub-Youssef H, Mackey AL, Arnold L, Ardjoune H, Magnan M, Sailhan F, Chelly J, Pavlath GK, Mounier R, Kjaer M, Chazaud B. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells. 2013;31:384–96.

    Article  CAS  PubMed  Google Scholar 

  35. Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest. 2010;120:11–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, Muñoz-Cánoves P. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle. 2011;1:1.

    Article  Google Scholar 

  37. Moraes VY, Lenza M, Tamaoki MJ, Faloppa F, Belloti JC. Platelet-rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev. 2014;29(4):CD010071.

    Google Scholar 

  38. Sheth U, Simunovic N, Klein G, Fu F, Einhorn TA, Schemitsch E, Ayeni OR, Bhandari M. Efficacy of autologous platelet-rich plasma use for orthopaedic indications: a meta-analysis. J Bone Joint Surg Am. 2012;94(4):298–307.

    Article  PubMed  Google Scholar 

  39. Magalon J, Bausset O, Serratrice N, Giraudo L, Aboudou H, Veran J, Magalon G, Dignat-Georges F, Sabatier F. Characterization and comparison of 5 platelet-rich plasma preparations in a single-donor model. Arthroscopy. 2014;30:629–38.

    Article  PubMed  Google Scholar 

  40. Oh JH, Kim W, Park KU, Roh YH. Comparison of the cellular composition and cytokine-release kinetics of various platelet-rich plasma preparations. Am J Sports Med. 2015;43:3062–70.

    Article  PubMed  Google Scholar 

  41. Hamilton BH, Best TM. Platelet-enriched plasma and muscle strain injuries: challenges imposed by the burden of proof. Clin J Sport Med. 2011;21:31–6.

    Article  PubMed  Google Scholar 

  42. Hammond JW, Hinton RY, Curl LA, Muriel JM, Lovering RM. Use of autologous platelet-rich plasma to treat muscle strain injuries. Am J Sports Med. 2009;37:1135–42.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Menetrey J, Kasemkijwattana C, Day CS, Bosch P, Vogt M, Fu FH, Moreland MS, Huard J. Growth factors improve muscle healing in vivo. J Bone Joint Surg Br. 2000;82:131–7.

    Article  CAS  PubMed  Google Scholar 

  44. Terada S, Ota S, Kobayashi M, Kobayashi T, Mifune Y, Takayama K, Witt M, Vadalà G, Oyster N, Otsuka T, Fu FH, Huard J. Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury. J Bone Joint Surg Am. 2013;95:980.

    Article  PubMed  Google Scholar 

  45. Wright-Carpenter T, Opolon P, Appell HJ, Meijer H, Wehling P, Mir LM. Treatment of muscle injuries by local administration of autologous conditioned serum: animal experiments using a muscle contusion model. Int J Sports Med. 2004;25:582–7.

    Article  CAS  PubMed  Google Scholar 

  46. Hamid MSA, Mohamed Ali MR, Yusof A, George J, Lee LPC. Platelet-rich plasma injections for the treatment of hamstring injuries: a randomized controlled trial. Am J Sports Med. 2014;42:2410–8.

    Article  Google Scholar 

  47. Hamilton B, Tol JL, Almusa E, Boukarroum S, Eirale C, Farooq A, Whiteley R, Chalabi H. Platelet-rich plasma does not enhance return to play in hamstring injuries: a randomised controlled trial. Br J Sports Med. 2015;49:943–50.

    Article  PubMed  Google Scholar 

  48. Reurink G, Goudswaard GJ, Moen MH, Weir A, Verhaar JA, Bierma-Zeinstra SM, Maas M, Tol JL. Platelet-rich plasma injections in acute muscle injury. N Engl J Med. 2014;370:2546–7.

    Article  CAS  PubMed  Google Scholar 

  49. Pas HI, Reurink G, Tol JL, Weir A, Winters M, Moen MH. Efficacy of rehabilitation (lengthening) exercises, platelet-rich plasma injections, and other conservative interventions in acute hamstring injuries: an updated systematic review and meta-analysis. Br J Sports Med. 2015;49:1197–205.

    Article  PubMed  Google Scholar 

  50. Rossi LA, Molina Rómoli AR, Bertona Altieri BA, Burgos Flor JA, Scordo WE, Elizondo CM. Does platelet-rich plasma decrease time to return to sports in acute muscle tear? A randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2016.

    Google Scholar 

  51. Martinez-Zapata MJ, Orozco L, Balius R, Soler R, Bosch A, Rodas G, Til L, Peirau X, Urrútia G, Gich I, et al. Efficacy of autologous platelet-rich plasma for the treatment of muscle rupture with haematoma: a multicentre, randomised, double-blind, placebo-controlled clinical trial. Blood Transfus. 2016;14(2):245–54.

    PubMed  PubMed Central  Google Scholar 

  52. Hamilton B, Knez W, Eirale C, Chalabi H. Platelet enriched plasma for acute muscle injury. Acta Orthop Belg. 2010;76:443.

    PubMed  Google Scholar 

  53. Lee P, Kwan A, Nokes L. Actovegin®-cutting-edge sports medicine or “ voodoo” remedy? Curr Sports Med Rep. 2011;10:186–90.

    Article  PubMed  Google Scholar 

  54. Reurink G, Goudswaard GJ, Tol JL, Verhaar JAN, Weir A, Moen MH. Therapeutic interventions for acute hamstring injuries: a systematic review. Br J Sports Med. 2012;46:103–9.

    Article  PubMed  Google Scholar 

  55. Lee P, Rattenberry A, Connelly S, Nokes L. Our experience on actovegin, is it cutting edge? Int J Sports Med. 2011;32:237–41.

    Article  CAS  PubMed  Google Scholar 

  56. Schneider C. Traumeel—an emerging option to nonsteroidal anti-inflammatory drugs in the management of acute musculoskeletal injuries. Int J Gen Med. 2011;4:225–34.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Calamia V, Lourido L, Fernández-Puente P, Mateos J, Rocha B, Montell E, Vergés J, Ruiz-Romero C, Blanco FJ. Secretome analysis of chondroitin sulfate-treated chondrocytes reveals anti-angiogenic, anti-inflammatory and anti-catabolic properties. Arthritis Res Ther. 2012;14:1.

    Article  Google Scholar 

  58. Calamia V, Ruiz-Romero C, Rocha B, Fernández-Puente P, Mateos J, Montell E, Vergés J, Blanco FJ. Pharmacoproteomic study of the effects of chondroitin and glucosamine sulfate on human articular chondrocytes. Arthritis Res Ther. 2010;12:1.

    Article  Google Scholar 

  59. Herrero-Beaumont G, Marcos ME, Sánchez-Pernaute O, Granados R, Ortega L, Montell E, Vergés J, Egido J, Largo R. Effect of chondroitin sulphate in a rabbit model of atherosclerosis aggravated by chronic arthritis. Br J Pharmacol. 2008;154:843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. du Souich P. Absorption, distribution and mechanism of action of SYSADOAS. Pharmacol Ther. 2014;142:362–74.

    Article  PubMed  Google Scholar 

  61. Tat S, Pelletier J-P, Vergés J, Lajeunesse D, Montell E, Fahmi H, Lavigne M, Martel-Pelletier J. Chondroitin and glucosamine sulfate in combination decrease the pro-resorptive properties of human osteoarthritis subchondral bone osteoblasts: a basic science study. Arthritis Res Ther. 2007;9:R117.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Terencio MC, Ferrándiz ML, Carceller MC, Ruhí R, Dalmau P, Vergés J, Montell E, Torrent A, Alcaraz MJ. Chondroprotective effects of the combination chondroitin sulfate-glucosamine in a model of osteoarthritis induced by anterior cruciate ligament transection in ovariectomised rats. Biomed Pharmacother. 2016;79:120–8.

    Article  CAS  PubMed  Google Scholar 

  63. Gabay C, Medinger-Sadowski C, Gascon D, Kolo F, Finckh A. Symptomatic effects of chondroitin 4 and chondroitin 6 sulfate on hand osteoarthritis: a randomized, double-blind, placebo-controlled clinical trial at a single center. Arthritis Rheum. 2011;63:3383–91.

    Article  CAS  PubMed  Google Scholar 

  64. Hochberg MC, Martel-Pelletier J, Monfort J, Möller I, Castillo JR, Arden N, Berenbaum F, Blanco FJ, Conaghan PG, Doménech G, Henrotin Y, Pap T, Richette P, Sawitzke A, du Souich P, Pelletier J-P. Combined chondroitin sulfate and glucosamine for painful knee osteoarthritis: a multicentre, randomised, double-blind, non-inferiority trial versus celecoxib. Ann Rheum Dis. 2016;75:37–44.

    Article  PubMed  Google Scholar 

  65. Pavelká K, Gatterová J, Olejarová M, Machacek S, Giacovelli G, Rovati LC. Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blind study. Arch Intern Med. 2002;162:2113.

    Article  PubMed  Google Scholar 

  66. Calamia V, Mateos J, Fernández-Puente P, Lourido L, Rocha B, Fernández-Costa C, Montell E, Vergés J, Ruiz-Romero C, Blanco FJ. A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine. Sci Rep. 2014;4:5069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Clegg DO, Reda DJ, Harris CL, Klein MA, O’Dell JR, Hooper MM, Bradley JD, Bingham III CO, Weisman MH, Jackson CG, et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med. 2006;354:795–808.

    Article  CAS  PubMed  Google Scholar 

  68. Campo GM, Avenoso A, Campo S, D’Ascola A, Traina P, Samà D, Calatroni A. Glycosaminoglycans modulate inflammation and apoptosis in LPS-treated chondrocytes. J Cell Biochem. 2009;106:83–92.

    Article  CAS  PubMed  Google Scholar 

  69. Chan P-S, Caron JP, Orth MW. Short-term gene expression changes in cartilage explants stimulated with interleukin beta plus glucosamine and chondroitin sulfate. J Rheumatol. 2006;33:1329–40.

    CAS  PubMed  Google Scholar 

  70. du Souich P, García AG, Vergés J, Montell E. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate. J Cell Mol Med. 2009;13:1451–63.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Campo GM, Avenoso A, Campo S, D’Ascola A, Traina P, Calatroni A. Chondroitin-4-sulphate inhibits NF-kB translocation and caspase activation in collagen-induced arthritis in mice. Osteoarthr Cartil. 2008;16:1474–83.

    Article  CAS  PubMed  Google Scholar 

  72. Cañas N, Gorina R, Planas AM, Vergés J, Montell E, García AG, López MG. Chondroitin sulfate inhibits lipopolysaccharide-induced inflammation in rat astrocytes by preventing nuclear factor kappa B activation. Neuroscience. 2010;167:872–9.

    Article  PubMed  Google Scholar 

  73. Largo R, Alvarez-Soria M, Díez-Ortego I, Calvo E, Sánchez-Pernaute O, Egido J, Herrero-Beaumont G. Glucosamine inhibits IL-1β-induced NFκB activation in human osteoarthritic chondrocytes. Osteoarthr Cartil. 2003;11:290–8.

    Article  CAS  PubMed  Google Scholar 

  74. Stabler TV, Huang Z, Montell E, Vergés J, Kraus VB. Chondroitin sulphate inhibits NF-κB activity induced by interaction of pathogenic and damage associated molecules. Osteoarthritis Cartilage. 2017;25(1):166–74.

    Article  CAS  PubMed  Google Scholar 

  75. Jomphe C, Gabriac M, Hale TM, Héroux L, Trudeau L-É, Deblois D, Montell E, Vergés J, du Souich P. Chondroitin sulfate inhibits the nuclear translocation of nuclear factor-κB in interleukin-1β-stimulated chondrocytes. Basic Clin Pharmacol Toxicol. 2008;102(1):59–65.

    CAS  PubMed  Google Scholar 

  76. Contreras-Muñoz P, Fernández-Martín A, Torrella R, Serres X, De la Varga M, Viscor G, Järvinen T, Martínez-Ibáñez V, Peiró J, Rodas G, Marotta M. A new surgical model of skeletal muscle injuries in rats reproduces human sports lesions. Int J Sports Med. 2015;37:183–90.

    Article  PubMed  Google Scholar 

  77. Gates CB, Karthikeyan T, Fu F, Huard J. Regenerative medicine for the musculoskeletal system based on muscle-derived stem cells. J Am Acad Orthop Surg. 2008;16:68–76.

    Article  PubMed  Google Scholar 

  78. Huard J, Gharaibeh B, Usas A. Regenerative medicine based on muscle-derived stem cells. Oper Tech Orthop. 2010;20:119–26.

    Article  Google Scholar 

  79. Péault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T, Gussoni E, Kunkel LM, Huard J. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther. 2007;15:867–77.

    Article  PubMed  Google Scholar 

  80. Tedesco FS, Cossu G. Stem cell therapies for muscle disorders. Curr Opin Neurol. 2012;25:597–603.

    Article  PubMed  Google Scholar 

  81. Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B, Gates C, Wernig A, Huard J. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol. 2002;157:851–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kobayashi M, Ota S, Terada S, Kawakami Y, Otsuka T, Fu FH, Huard J. The combined use of losartan and muscle-derived stem cells significantly improves the functional recovery of muscle in a young mouse model of contusion injuries. Am J Sports Med. 2016;44(12):3252–61.

    Article  PubMed  Google Scholar 

  83. Ota S, Uehara K, Nozaki M, Kobayashi T, Terada S, Tobita K, Fu FH, Huard J. Intramuscular transplantation of muscle-derived stem cells accelerates skeletal muscle healing after contusion injury via enhancement of angiogenesis. Am J Sports Med. 2011;39:1912–22.

    Article  PubMed  Google Scholar 

  84. Carr LK, Steele D, Steele S, Wagner D, Pruchnic R, Jankowski R, Erickson J, Huard J, Chancellor MB. 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int Urogynecol J. 2008;19:881–3.

    Article  CAS  Google Scholar 

  85. McCullagh KJA, Perlingeiro RCR. Coaxing stem cells for skeletal muscle repair. Adv Drug Deliv Rev. 2015;84:198–207.

    Article  CAS  PubMed  Google Scholar 

  86. Fukushima K, Badlani N, Usas A, Riano F, Fu FH, Huard J. The use of an antifibrosis agent to improve muscle recovery after laceration. Am J Sports Med. 2001;29:394–402.

    CAS  PubMed  Google Scholar 

  87. Lieber RL, Ward SR. Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. AJP Cell Physiol. 2013;305:C241–52.

    Article  CAS  Google Scholar 

  88. Chan Y-S, Li Y, Foster W, Horaguchi T, Somogyi G, Fu FH, Huard J. Antifibrotic effects of suramin in injured skeletal muscle after laceration. J Appl Physiol. 2003;95:771–80.

    Article  CAS  PubMed  Google Scholar 

  89. Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J. Transforming growth factor-β1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol. 2004;164:1007–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Garg K, Corona BT, Walters TJ. Therapeutic strategies for preventing skeletal muscle fibrosis after injury. Front Pharmacol. 2015;6:87.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chan Y-S. The use of suramin, an antifibrotic agent, to improve muscle recovery after strain injury. Am J Sports Med. 2005;33:43–51.

    Article  PubMed  Google Scholar 

  92. Nozaki M, Ota S, Terada S, Li Y, Uehara K, Gharaibeh B, Fu FH, Huard J. Timing of the administration of suramin treatment after muscle injury. Muscle Nerve. 2012;46:70–9.

    Article  CAS  PubMed  Google Scholar 

  93. Bedair HS, Karthikeyan T, Quintero A, Li Y, Huard J. Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am J Sports Med. 2008;36:1548–54.

    Article  PubMed  Google Scholar 

  94. Kobayashi T, Uehara K, Ota S, Tobita K, Ambrosio F, Cummins JH, Terada S, Fu FH, Huard J. The timing of administration of a clinically relevant dose of losartan influences the healing process after contusion induced muscle injury. J Appl Physiol. 2013;114:262–73.

    Article  CAS  PubMed  Google Scholar 

  95. Lee E-M, Kim A-Y, Lee E-J, Park J-K, Lee M-M, Hwang M, Kim C-Y, Kim S-Y, Jeong K-S. Therapeutic effects of mouse adipose-derived stem cells and losartan in the skeletal muscle of injured Mdx mice. Cell Transplant. 2015;24:939–53.

    Article  PubMed  Google Scholar 

  96. Foster W, Li Y, Usas A, Somogyi G, Huard J. Gamma interferon as an antifibrosis agent in skeletal muscle. J Orthop Res. 2003;21:798–804.

    Article  CAS  PubMed  Google Scholar 

  97. Reurink G, Goudswaard GJ, Moen MH, Weir A, Verhaar JAN, Tol JL. Myotoxicity of injections for acute muscle injuries: a systematic review. Sports Med. 2014;44:943–56.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Ms. Jolyn Waij for the drawing of Fig. 19.1, and Mr. Jake Bambrough for his help with the preparation of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne D. van der Made .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

van der Made, A.D., Reurink, G., Tol, J.L., Marotta, M., Rodas, G., Kerkhoffs, G.M. (2017). Emerging Biological Approaches to Muscle Injuries. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics