Skip to main content
Log in

Myotoxicity of Injections for Acute Muscle Injuries: A Systematic Review

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Injection therapies are widely used for muscle injuries. As there is only limited evidence of their efficacy, physicians should be aware of the potential harmful effects of these injected preparations.

Objectives

The purpose of this review was to systematically review the literature on the myotoxic effects of intramuscular injection preparations commonly used for acute muscle injuries.

Data Sources

The databases of PubMed, Embase, Web of Science, Cochrane Library, CINAHL and SportDiscus were searched in March 2013.

Study Eligibility Criteria

Studies reporting histological evaluation or creatine kinase activity after intramuscular injection with local anaesthetics, corticosteroids, non-steroidal anti-inflammatory drugs (NSAIDs), platelet-rich plasma (PRP), Traumeel® and Actovegin®, or combination preparations were eligible for inclusion.

Data Analysis

Two authors independently screened the search results and assessed the risk of bias. A best-evidence synthesis was used to identify the level of evidence.

Results

Forty-nine studies were included in this systematic review. There is strong to moderate evidence that intramuscularly injected local anaesthetics and NSAIDs are myotoxic, and there is conflicting evidence of the myotoxicity of PRP. There is limited evidence that single corticosteroid injections are not myotoxic but have a synergistic myotoxic effect when used together with local anaesthetics. There is no information to assess whether Actovegin® and Traumeel® are myotoxic.

Conclusion

Local anaesthetics and NSAID injections are not recommended for the treatment of muscle injuries in athletes, as they are myotoxic. The possible myotoxic effects of corticosteroids, PRP, Traumeel® and Actovegin® should be assessed in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39:1226–32.

    Article  PubMed  Google Scholar 

  2. Feeley BT, Kennelly S, Barnes RP, et al. Epidemiology of National Football League training camp injuries from 1998 to 2007. Am J Sports Med. 2008;36:1597–603.

    Article  PubMed  Google Scholar 

  3. Shankar PR, Fields SK, Collins CL, et al. Epidemiology of high school and collegiate football injuries in the United States, 2005–2006. Am J Sports Med. 2007;35:1295–303.

    Article  PubMed  Google Scholar 

  4. Orchard J, Seward H. Epidemiology of injuries in the Australian Football League, seasons 1997–2000. Br J Sports Med. 2002;36:39–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. De Visser HM, Reijman M, Heijboer MP, et al. Risk factors of recurrent hamstring injuries: a systematic review. Br J Sports Med. 2012;46:124–30.

    Article  PubMed  Google Scholar 

  6. Levine WN, Bergfeld JA, Tessendorf W, et al. Intramuscular corticosteroid injection for hamstring injuries. A 13-year experience in the National Football League. Am J Sports Med. 2000;28:297–300.

    CAS  PubMed  Google Scholar 

  7. Stevens KJ, Crain JM, Akizuki KH, et al. Imaging and ultrasound-guided steroid injection of internal oblique muscle strains in baseball pitchers. Am J Sports Med. 2010;38:581–5.

    Article  PubMed  Google Scholar 

  8. Ziltener J-L, Leal S, Fournier P-E. Non-steroidal anti-inflammatory drugs for athletes: an update. Ann Phys Rehabil Med. 2010;53(278–82):282–8.

    Google Scholar 

  9. Wright-Carpenter T, Klein P, Schäferhoff P, et al. Treatment of muscle injuries by local administration of autologous conditioned serum: a pilot study on sportsmen with muscle strains. Int J Sports Med. 2004;25:588–93.

    Article  CAS  PubMed  Google Scholar 

  10. Hamilton B, Knez W, Eirale C, et al. Platelet enriched plasma for acute muscle injury. Acta Orthop Belg. 2010;76:443–8.

    PubMed  Google Scholar 

  11. Rettig AC, Meyer S, Bhadra AK. Platelet-rich plasma in addition to rehabilitation for acute hamstring injuries in NFL players clinical effects and time to return to play. Orthop J Sports Med. 2013;1(1). doi:10.1177/2325967113494354

  12. Bernuzzi G, Petraglia F, Pedrini MF, et al. Use of platelet-rich plasma in the care of sports injuries: our experience with ultrasound-guided injection. Blood Transfus 2014;12 Suppl 1:S229–34.

    Google Scholar 

  13. Pfister A, Koller W. Treatment of fresh muscle injury. Sportverletz Sportschaden. 1990;4:41–4.

    Article  CAS  PubMed  Google Scholar 

  14. Lee P, Rattenberry A, Connelly S, et al. Our experience on Actovegin, is it cutting edge? Int J Sports Med. 2011;32:237–41.

    Article  CAS  PubMed  Google Scholar 

  15. Hamilton BH, Best TM. Platelet-enriched plasma and muscle strain injuries: challenges imposed by the burden of proof. Clin J Sport Med. 2011;21:31–6.

    Article  PubMed  Google Scholar 

  16. Sheth U, Simunovic N, Klein G, et al. Efficacy of autologous platelet-rich plasma use for orthopaedic indications: a meta-analysis. J Bone Joint Surg Am. 2012;94:298–307.

    Article  PubMed  Google Scholar 

  17. Orchard JW, Best TM, Mueller-Wohlfahrt H-W, et al. The early management of muscle strains in the elite athlete: best practice in a world with a limited evidence basis. Br J Sports Med. 2008;42:158–9.

    Article  PubMed  Google Scholar 

  18. Reurink G, Goudswaard GJ, Tol JL, et al. Therapeutic interventions for acute hamstring injuries: a systematic review. Br J Sports Med. 2012;46:103–9.

    Article  PubMed  Google Scholar 

  19. Rasmussen F, Svendsen O. Tissue damage and concentration at the injection site after intramuscular injection of chemotherapeutics and vehicles in pigs. Res Vet Sci. 1976;20:55–60.

    CAS  PubMed  Google Scholar 

  20. Rasmussen F. Tissue damage at the injection site after intramuscular injection of drugs. Vet Sci Commun. 1978;2:173–82.

    Article  CAS  Google Scholar 

  21. Zink W, Graf BM. Local anesthetic myotoxicity. Reg Anesth Pain Med. 2004;29:333–40.

    Article  CAS  PubMed  Google Scholar 

  22. Blom L, Rasmussen F. Tissue damage at the infection site after intramuscular injection of drugs in hens. Br Poult Sci. 1976;17:1–4.

    Article  CAS  PubMed  Google Scholar 

  23. Nosaka K, Sakamoto K. Changes in plasma enzyme activity after intramuscular injection of bupivacaine into the human biceps brachii. Acta Physiol Scand. 1999;167:259–65.

    Article  CAS  PubMed  Google Scholar 

  24. Diness V. Local tissue damage after intramuscular injections in rabbits and pigs: quantitation by determination of creatine kinase activity at injection sites. Acta Pharmacol Toxicol. 1985;56:410–5.

    Article  CAS  Google Scholar 

  25. Nyska A, Skolnick M, Ziv G, et al. Correlation of injection site damage and serum creatine kinase activity in turkeys following intramuscular and subcutaneous administration of norfloxacin nicotinate. Avian Pathol. 1994;23:671–82.

    Article  CAS  PubMed  Google Scholar 

  26. De Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55:129–33.

    Article  PubMed  Google Scholar 

  27. Verhagen AP, de Vet HC, de Bie RA, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998;51:1235–41.

    Article  CAS  PubMed  Google Scholar 

  28. Slavin RE. Best evidence synthesis: an intelligent alternative to meta-analysis. J Clin Epidemiol. 1995;48:9–18.

    Article  CAS  PubMed  Google Scholar 

  29. Van Tulder M, Furlan A, Bombardier C, et al. Editorial Board of the Cochrane Collaboration Back Review Group. Updated method guidelines for systematic reviews in the Cochrane Collaboration Back Review Group. Spine. 2003;28:1290–9.

    PubMed  Google Scholar 

  30. Guttu RL, Page DG, Laskin DM. Delayed healing of muscle after injection of bupivicaine and steroid. Ann Dent. 1990;49:5–8.

    CAS  PubMed  Google Scholar 

  31. Abe J, Fujii Y, Kuwamura Y, Hizawa K. Fiber type differentiation and myosin expression in regenerating rat muscles. Acta Pathol Jpn. 1987;37:1537–47.

    CAS  PubMed  Google Scholar 

  32. Akiyama C, Kobayashi S, Nonaka I. Comparison of behavior in muscle fiber regeneration after bupivacaine hydrochloride- and acid anhydride-induced myonecrosis. Acta Neuropathol. 1992;83:584–9.

    Article  CAS  PubMed  Google Scholar 

  33. Basson MD, Carlson BM. Myotoxicity of single and repeated injections of mepivacaine (Carbocaine) in the rat. Anesth Analg. 1980;59:275–82.

    Article  CAS  PubMed  Google Scholar 

  34. Beitzel F, Gregorevic P, Ryall JG, et al. Beta2-adrenoceptor agonist fenoterol enhances functional repair of regenerating rat skeletal muscle after injury. J Appl Physiol. 1985;2004(96):1385–92.

    Google Scholar 

  35. Brazeau GA, Fung HL. An in vitro model to evaluate muscle damage following intramuscular injections. Pharm Res. 1989;6:167–70.

    Article  CAS  PubMed  Google Scholar 

  36. Brazeau G, Sauberan SL, Gatlin L, et al. Effect of particle size of parenteral suspensions on in vitro muscle damage. Pharm Dev Technol. 2011;16:591–8.

    Article  CAS  PubMed  Google Scholar 

  37. Carlson BM, Shepard B, Komorowski TE. A histological study of local anesthetic-induced muscle degeneration and regeneration in the monkey. J Orthop Res. 1990;8:485–94.

    Article  CAS  PubMed  Google Scholar 

  38. Cereda CMS, Tofoli GR, Maturana LG, et al. Local neurotoxicity and myotoxicity evaluation of cyclodextrin complexes of bupivacaine and ropivacaine. Anesth Analg. 2012;115:1234–41.

    Article  CAS  PubMed  Google Scholar 

  39. Chellman GJ, Faurot GF, Lollini LO, et al. Rat paw-lick/muscle irritation model for evaluating parenteral formulations for pain-on-injection and muscle damage. Fundam Appl Toxicol. 1990;15:697–709.

    Article  CAS  PubMed  Google Scholar 

  40. Cherng C-H, Wong C-S, Wu C-T, et al. Intramuscular bupivacaine injection dose-dependently increases glutamate release and muscle injury in rats. Acta Anaesthesiol Taiwanica. 2010;48:8–14.

    Article  Google Scholar 

  41. Duguez S, Féasson L, Denis C, et al. Mitochondrial biogenesis during skeletal muscle regeneration. Am J Physiol Endocrinol Metab. 2002;282:E802–9.

    CAS  PubMed  Google Scholar 

  42. Foster AH, Carlson BM. Myotoxicity of local anesthetics and regeneration of the damaged muscle fibers. Anesth Analg. 1980;59:727–36.

    Article  CAS  PubMed  Google Scholar 

  43. Fujikake T, Hart R, Nosaka K. Changes in B-mode ultrasound echo intensity following injection of bupivacaine hydrochloride to rat hind limb muscles in relation to histologic changes. Ultrasound Med Biol. 2009;35:687–96.

    Article  CAS  PubMed  Google Scholar 

  44. Grim M, Rerábková L, Carlson BM. A test for muscle lesions and their regeneration following intramuscular drug application. Toxicol Pathol. 1988;16:432–42.

    Article  CAS  PubMed  Google Scholar 

  45. Hall-Craggs EC. Rapid degeneration and regeneration of a whole skeletal muscle following treatment with bupivacaine (Marcain). Exp Neurol. 1974;43:349–58.

    Article  CAS  PubMed  Google Scholar 

  46. Horiguchi T, Shibata M-A, Ito Y, et al. Macrophage apoptosis in rat skeletal muscle treated with bupivacaine hydrochloride: possible role of MCP-1. Muscle Nerve. 2002;26:79–86.

    Article  CAS  PubMed  Google Scholar 

  47. Ishiura S, Nonaka I, Fujita T, et al. Effect of cycloheximide administration on bupivacaine-induced acute muscle degradation. J Biochem. 1983;94:1631–6.

    CAS  PubMed  Google Scholar 

  48. Ishiura S, Nonaka I, Sugita H. Biochemical aspects of bupivacaine-induced acute muscle degradation. J Cell Sci. 1986;83:197–212.

    CAS  PubMed  Google Scholar 

  49. Jiménez-Díaz F, Jimena I, Luque E, et al. Experimental muscle injury: correlation between ultrasound and histological findings. Muscle Nerve. 2012;45:705–12.

    Article  PubMed  Google Scholar 

  50. Jones GH. Protein synthesis in bupivacaine (marcaine)-treated, regenerating skeletal muscle. Muscle Nerve. 1982;5:281–90.

    Article  CAS  PubMed  Google Scholar 

  51. Lagrota-Candido J, Canella I, Pinheiro DF, et al. Characteristic pattern of skeletal muscle remodelling in different mouse strains. Int J Exp Pathol. 2010;91:522–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Louboutin JP, Fichter-Gagnepain V, Noireaud J. External calcium dependence of extensor digitorum longus muscle contractility during bupivacaine-induced regeneration. Muscle Nerve. 1996;19:994–1002.

    Article  CAS  PubMed  Google Scholar 

  53. McNeill Ingham SJ, de Castro Pochini A, de Oliveira DA, et al. Bupivacaine injection leads to muscle force reduction and histologic changes in a murine model. PMR. 2011;3:1106–9.

    Article  Google Scholar 

  54. Nepomnyashchikh LM, Bakarev MA, Tsimmerman VG. Reparative reactions of the skeletal muscles in early aging OXYS rats with toxic metabolic injuries caused by bupivacaine. Bull Exp Biol Med. 2007;144:370–5.

    Article  CAS  PubMed  Google Scholar 

  55. Nonaka I, Takagi A, Ishiura S, et al. Pathophysiology of muscle fiber necrosis induced by bupivacaine hydrochloride (Marcaine). Acta Neuropathol. 1983;60:167–74.

    Article  CAS  PubMed  Google Scholar 

  56. Nosaka K. Changes in serum enzyme activities after injection of bupivacaine into rat tibialis anterior. J Appl Physiol. 1985;1996(81):876–84.

    Google Scholar 

  57. Nosaka K, Sakamoto K. Changes in plasma enzyme activity after intramuscular injection of bupivacaine into the human biceps brachii. Acta Physiol Scand. 1999;167:259–65.

    Article  CAS  PubMed  Google Scholar 

  58. Orimo S, Hiyamuta E, Arahata K, et al. Analysis of inflammatory cells and complement C3 in bupivacaine-induced myonecrosis. Muscle Nerve. 1991;14:515–20.

    Article  CAS  PubMed  Google Scholar 

  59. Osawa K, Maeda N, Kumegawa M, et al. Long-term observations of the masseter muscle following single or repeated injections of lidocaine hydrochloride into developing mice. Shika Kiso Igakkai Zasshi. 1989;31:198–210.

    CAS  PubMed  Google Scholar 

  60. Plant DR, Colarossi FE, Lynch GS. Notexin causes greater myotoxic damage and slower functional repair in mouse skeletal muscles than bupivacaine. Muscle Nerve. 2006;34:577–85.

    Article  CAS  PubMed  Google Scholar 

  61. Politi PK, Havaki S, Manta P, et al. Bupivacaine-induced regeneration of rat soleus muscle: ultrastructural and immunohistochemical aspects. Ultrastruct Pathol. 2006;30:461–9.

    Article  PubMed  Google Scholar 

  62. Rosenblatt JD, Woods RI. Hypertrophy of rat extensor digitorum longus muscle injected with bupivacaine. A sequential histochemical, immunohistochemical, histological and morphometric study. J Anat. 1992;181(Pt 1):11–27.

    PubMed Central  PubMed  Google Scholar 

  63. Sadeh M, Czyewski K, Stern LZ. Chronic myopathy induced by repeated bupivacaine injections. J Neurol Sci. 1985;67:229–38.

    Article  CAS  PubMed  Google Scholar 

  64. Sadeh M, Stern LZ, Czyzewski K, et al. Alterations in creatine kinase, ornithine decarboxylase, and transglutaminase during muscle regeneration. Life Sci. 1984;34:483–8.

    Article  CAS  PubMed  Google Scholar 

  65. Sauerwein HP, Brouwer T, Dunning AJ. Creatine phosphokinase, myocardial infarction and intramuscular injection. Ned Tijdschr Geneeskd. 1975;119:1399–402.

    CAS  PubMed  Google Scholar 

  66. Steiness E, Rasmussen F, Svendsen O, et al. A comparative study of serum creatine phosphokinase (CPK) activity in rabbits, pigs and humans after intramuscular injection of local damaging drugs. Acta Pharmacol Toxicol. 1978;42:357–64.

    Article  CAS  Google Scholar 

  67. Tomas i Ferré J, Fenoll i Brunet R, Santafé M, et al. Changes in motor nerve terminals during bupivacaine-induced postsynaptic deprivation. J Anat. 1989;162:225–34.

    PubMed Central  PubMed  Google Scholar 

  68. White JP, Baltgalvis KA, Sato S, et al. Effect of nandrolone decanoate administration on recovery from bupivacaine-induced muscle injury. J Appl Physiol. 1985;2009(107):1420–30.

    Google Scholar 

  69. Yildiz K, Efesoy SN, Ozdamar S, et al. Myotoxic effects of levobupivacaine, bupivacaine and ropivacaine in a rat model. Clin Investig Med. 2011;34:E273.

    CAS  Google Scholar 

  70. Chellman GJ, Lollini LO, Dorr AE, et al. Comparison of ketorolac tromethamine with other injectable nonsteroidal anti-inflammatory drugs for pain-on-injection and muscle damage in the rat. Hum Exp Toxicol. 1994;13:111–7.

    Article  CAS  PubMed  Google Scholar 

  71. Ghozlan PR, Bernhardt M, Vélicitat P, et al. Tolerability of multiple administration of intramuscular meloxicam: a comparison with intramuscular piroxicam in patients with rheumatoid arthritis or osteoarthritis. Br J Rheumatol. 1996;35(Suppl 1):51–5.

    Article  CAS  PubMed  Google Scholar 

  72. Guterres SS, Fessi H, Barratt G, et al. Poly(rac-lactide) nanocapsules containing diclofenac: protection against muscular damage in rats. J Biomater Sci Polym Ed. 2000;11:1347–55.

    Article  CAS  PubMed  Google Scholar 

  73. Lima EM, Oliveira AG. Tissue tolerance of diclofenac sodium encapsulated in liposomes after intramuscular administration. Drug Dev Ind Pharm. 2002;28:673–80.

    Article  CAS  PubMed  Google Scholar 

  74. Narjes H, Türck D, Busch U, et al. Pharmacokinetics and tolerability of meloxicam after i.m. administration. Br J Clin Pharmacol. 1996;41:135–9.

    Article  CAS  PubMed  Google Scholar 

  75. Pyörälä S, Laurila T, Lehtonen S, Leppä S, Kaartinen L. Local tissue damage in cows after intramuscular administration of preparations containing phenylbutazone, flunixin, ketoprofen and metamizole. Acta Vet Scand. 1999;40:145–50.

    PubMed  Google Scholar 

  76. Hammond JW, Hinton RY, Curl LA, et al. Use of autologous platelet-rich plasma to treat muscle strain injuries. Am J Sports Med. 2009;37:1135–42.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Harris NL, Huffer WE, von Stade E, et al. The effect of platelet-rich plasma on normal soft tissues in the rabbit. J Bone Joint Surg Am. 2012;94:786–93.

    PubMed  Google Scholar 

  78. Wright-Carpenter T, Opolon P, Appell HJ, et al. Treatment of muscle injuries by local administration of autologous conditioned serum: animal experiments using a muscle contusion model. Int J Sports Med. 2004;25:582–7.

    Article  CAS  PubMed  Google Scholar 

  79. Campbell RSD, Dunn AJ. Radiological interventions for soft tissue injuries in sport. Br J Radiol. 2012;85:1186–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Rochcongar P, de Labareyre H, de Lecluse J, et al. L’utilisation et la prescription des corticoïdes en médecine du sport. Sci Sports. 2004;19:145–54.

    Article  Google Scholar 

  81. Dietzel DP, Hedlund EC. Injections and return to play. Curr Pain Headache Rep. 2005;9:11–6.

    Article  PubMed  Google Scholar 

  82. Andia I, Sánchez M, Maffulli N. Platelet rich plasma therapies for sports muscle injuries: any evidence behind clinical practice? Expert Opin Biol Ther. 2011;11:509–18.

    Article  PubMed  Google Scholar 

  83. Titford M. The long history of hematoxylin. Biotech Histochem. 2005;80:73–8.

    Article  CAS  PubMed  Google Scholar 

  84. Miike T, Nonaka I, Ohtani Y, et al. Behavior of sarcotubular system formation in experimentally induced regeneration of muscle fibers. J Neurol Sci. 1984;65:193–200.

    Article  CAS  PubMed  Google Scholar 

  85. Komorowski TE, Shepard B, Okland S, et al. An electron microscopic study of local anesthetic-induced skeletal muscle fiber degeneration and regeneration in the monkey. J Orthop Res. 1990;8:495–503.

    Article  CAS  PubMed  Google Scholar 

  86. Seibel HR, Dolwick MF, Bush FM, et al. Electron-microscopic study of the rat masseter muscle following injection of lidocaine. Acta Anat. 1978;100:354–64.

    Article  CAS  PubMed  Google Scholar 

  87. Tamaki T, Akatsuka A, Uchiyama S, et al. Appearance of complex branched muscle fibers is associated with a shift to slow muscle characteristics. Acta Anat. 1997;159:108–13.

    Article  CAS  PubMed  Google Scholar 

  88. Mikkelsen UR, Langberg H, Helmark IC, et al. Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. J Appl Physiol. 1985;2009(107):1600–11.

    Google Scholar 

  89. Hamilton B, Fowler P, Galloway H, et al. Nicolau syndrome in an athlete following intra-muscular diclofenac injection. Acta Orthop Belg. 2008;74:860–4.

    PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were used in the preparation of this review. Gustaaf Reurink and Adam Weir reported receiving support from Arthrex Medizinsiche Instrumente GmbH for travel to a meeting about platelet-rich plasma. The other authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustaaf Reurink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reurink, G., Goudswaard, G.J., Moen, M.H. et al. Myotoxicity of Injections for Acute Muscle Injuries: A Systematic Review. Sports Med 44, 943–956 (2014). https://doi.org/10.1007/s40279-014-0186-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-014-0186-6

Keywords

Navigation