Skip to main content

Neonatal Kidney Dysfunction

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

Normal renal physiology in term neonates provides them with adequate function to maintain proper homeostasis. Premature infants are born with less glomeruli, and the extra-uterine environment is not optimal for renal development, especially in context of acute kidney injury. Premature infants are born with poor ability to clear waste products, and maintain electrolyte/fluid balance, thereby relying on the clinician to provide adequate fluid/electrolyte and nutrition provision to assure homeostasis. Neonatal acute kidney injury is common in premature infants, infants with perinatal depression, neonates who receive cardiopulmonary bypass surgery or require extra-corporeal membrane oxygenation. They are very commonly exposed to nephrotoxic medications. Despite this, neonates represent one of the least studied critically ill population. Recent studies using contemporary AKI definitions elucidate that AKI is very common in the neonatal intensive care unit. Renal replacement therapy can be provided to neonates using peritoneal dialysis, intermittent hemodialysis, and continuous renal replacement therapy. New machines and filters have been developed which promise to decrease the complexity and risks of these therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rudolph AH, Teramo M, et al. Studies on the circulation of the previable fetus. Pediatr Res. 1971;5:452–65.

    Article  CAS  Google Scholar 

  2. Jose PA, Fildes RD, Gomez RA, Chevalier RL, Robillard JE. Neonatal renal function and physiology. Curr Opin Pediatr. 1994;6(2):172–7.

    Article  CAS  PubMed  Google Scholar 

  3. Yao LP, Jose PA. Developmental renal hemodynamics. Pediatr Nephrol. 1995;9(5):632–7.

    Article  CAS  PubMed  Google Scholar 

  4. Paton JB, Fisher DE, DeLannoy CW, Behrman RE. Umbilical blood flow, cardiac output, and organ blood flow in the immature baboon fetus. Am J Obstet Gynecol. 1973;117(4):560–6.

    Article  CAS  PubMed  Google Scholar 

  5. Gruskin AB, Edelmann Jr CM, Yuan S. Maturational changes in renal blood flow in piglets. Pediatr Res. 1970;4(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  6. Evan Jr AP, Stoeckel JA, Loemker V, Baker JT. Development of the intrarenal vascular system of the puppy kidney. Anat Rec. 1979;194(2):187–99.

    Article  PubMed  Google Scholar 

  7. Chikkannaiah P, Roy M, Kangle R, Patil PV. Glomerulogenesis: can it predict the gestational age? A study of 176 fetuses. Indian J Pathol Microbiol. 2012;55(3):303–7.

    Article  PubMed  Google Scholar 

  8. Abrahamson DR. Glomerulogenesis in the developing kidney. Semin Nephrol. 1991;11(4):375–89.

    CAS  PubMed  Google Scholar 

  9. Rodriguez MM, Gomez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol. 2004;7(1):17–25.

    Article  PubMed  Google Scholar 

  10. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth S. Formulas to estimate GFR in children with chronic kidney disease. J Am Soc Nephrol. 2009;20(3):629–37.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schwartz GJ, Furth SL. Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol (Berlin, Germany). 2007;22(11):1839–48.

    Article  Google Scholar 

  12. Brion LP, Fleischman AR, McCarton C, Schwartz GJ. A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: noninvasive assessment of body composition and growth. J Pediatr. 1986;109(4):698–707.

    Article  CAS  PubMed  Google Scholar 

  13. Gallini F, Maggio L, Romagnoli C, Marrocco G, Tortorolo G. Progression of renal function in preterm neonates with gestational age < or = 32 weeks. Pediatr Nephrol (Berlin, Germany). 2000;15(1–2):119–24.

    Article  CAS  Google Scholar 

  14. Lolekha PH, Jaruthunyaluck S, Srisawasdi P. Deproteinization of serum: another best approach to eliminate all forms of bilirubin interference on serum creatinine by the kinetic Jaffe reaction. J Clin Lab Anal. 2001;15(3):116–21.

    Article  CAS  PubMed  Google Scholar 

  15. Schwartz GJ, Feld LG, Langford DJ. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr. 1984;104(6):849–54.

    Article  CAS  PubMed  Google Scholar 

  16. Demirel G, Celik IH, Canpolat FE, Erdeve O, Biyikli Z, Dilmen U. Reference values of serum cystatin C in very low-birthweight premature infants. Acta Paediatr. 2013;102(1):e4–7.

    Article  CAS  PubMed  Google Scholar 

  17. Kandasamy Y, Smith R, Wright IM. Measuring cystatin C to determine renal function in neonates. Pediatr Care Med: J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2013;14(3):318–22.

    Article  Google Scholar 

  18. Sulyock E. Neonates. In: WE BTAEH, editor. Pediatric nephrology: Lippincott, Williams and Wilkins; Philadelphia, PA 1999.

    Google Scholar 

  19. Guignard J. Renal morphogenesis and development of renal function. In: Taeusch HE, Ballard RA, Gleason CA, editors. Avery’s diseases of the newborn. 8th ed. Philadelphia: Elsevier Saunders; 2005. p. 1257–66.

    Chapter  Google Scholar 

  20. Goldstein L. Renal ammonia and acid excretion in infant rats. Am J Physiol. 1970;218(5):1394–8.

    CAS  PubMed  Google Scholar 

  21. Quigley R, Baum M. Neonatal acid base balance and disturbances. Semin Perinatol. 2004;28(2):97–102.

    Article  PubMed  Google Scholar 

  22. Day R, Franklin J. Renal carbonic anhydrase in premature and mature infants. Pediatrics. 1951;7(2):182–5.

    CAS  PubMed  Google Scholar 

  23. Linder N, Hammel N, Hernandez A, Fridman E, Dlugy E, Herscovici T, et al. Intestinal perforation in very-low-birth-weight infants with necrotizing enterocolitis. J Pediatr Surg. 2013;48(3):562–7.

    Article  PubMed  Google Scholar 

  24. Merlob P, Litwin A, Mor N. Possible association between acetazolamide administration during pregnancy and metabolic disorders in the newborn. Eur J Obstet Gynecol Reprod Biol. 1990;35(1):85–8.

    Article  CAS  PubMed  Google Scholar 

  25. Taeusch HE, Ballard RA, Gleason CA, editors. Avery’s diseases of the newborn. 8th ed. Philadelphia: Elsevier Saunders; 2005.

    Google Scholar 

  26. Ozand PT, Gascon GG. Organic acidurias: a review. Part 2. J Child Neurol. 1991;6(4):288–303.

    Article  CAS  PubMed  Google Scholar 

  27. Yurdakok M. What next in necrotizing enterocolitis? Turk J Pediatr. 2008;50(1):1–11.

    PubMed  Google Scholar 

  28. Johnson PJ. Sodium bicarbonate use in the treatment of acute neonatal lactic acidosis: benefit or harm? Neonatal Netw: NN. 2011;30(3):199–205.

    Article  PubMed  Google Scholar 

  29. Lokesh L, Kumar P, Murki S, Narang A. A randomized controlled trial of sodium bicarbonate in neonatal resuscitation-effect on immediate outcome. Resuscitation. 2004;60(2):219–23.

    Article  CAS  PubMed  Google Scholar 

  30. Kette F, Weil MH, Gazmuri RJ. Buffer solutions may compromise cardiac resuscitation by reducing coronary perfusion pressure. JAMA. 1991;266(15):2121–6.

    Article  CAS  PubMed  Google Scholar 

  31. Papile LA, Burstein J, Burstein R, Koffler H, Koops B. Relationship of intravenous sodium bicarbonate infusions and cerebral intraventricular hemorrhage. J Pediatr. 1978;93(5):834–6.

    Article  CAS  PubMed  Google Scholar 

  32. Parker MJ, Parshuram CS. Sodium bicarbonate use in shock and cardiac arrest: attitudes of pediatric acute care physicians. Crit Care Med. 2013;41(9):2188–95.

    Article  CAS  PubMed  Google Scholar 

  33. Niermeyer S, Kattwinkel J, Van Reempts P, Nadkarni V, Phillips B, Zideman D, et al. International guidelines for neonatal resuscitation: an excerpt from the guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care: international consensus on science. Contributors and reviewers for the neonatal resuscitation guidelines. Pediatrics. 2000;106(3):E29.

    Article  CAS  PubMed  Google Scholar 

  34. van Thiel RJ, Koopman SR, Takkenberg JJ, Ten Harkel AD, Bogers AJ. Metabolic alkalosis after pediatric cardiac surgery. Eur J Cardiothorac Surg. 2005;28(2):229–33.

    Article  PubMed  Google Scholar 

  35. Wong HR, Chundu KR. Metabolic alkalosis in children undergoing cardiac surgery. Crit Care Med. 1993;21(6):884–7.

    Article  CAS  PubMed  Google Scholar 

  36. Tutay GJ, Capraro G, Spirko B, Garb J, Smithline H. Electrolyte profile of pediatric patients with hypertrophic pyloric stenosis. Pediatr Emerg Care. 2013;29(4):465–8.

    Article  PubMed  Google Scholar 

  37. Kundak AA, Dilli D, Karagol B, Karadag N, Zenciroglu A, Okumus N, et al. Non benign neonatal arrhythmias observed in a tertiary neonatal intensive care unit. Indian J Pediatr. 2013;80(7):555–9.

    Article  PubMed  Google Scholar 

  38. Gruskay J, Costarino AT, Polin RA, Baumgart S. Nonoliguric hyperkalemia in the premature infant weighing less than 1000 grams. J Pediatr. 1988;113(2):381–6.

    Article  CAS  PubMed  Google Scholar 

  39. Jeffery J, Sharma A, Ayling RM. Detection of haemolysis and reporting of potassium results in samples from neonates. Ann Clin Biochem. 2009;46(Pt 3):222–5.

    Article  CAS  PubMed  Google Scholar 

  40. Masilamani K, van der Voort J. The management of acute hyperkalaemia in neonates and children. Arch Dis Child. 2012;97(4):376–80.

    Article  PubMed  Google Scholar 

  41. Greenough A, Emery EF, Brooker R, Gamsu HR. Salbutamol infusion to treat neonatal hyperkalaemia. J Perinat Med. 1992;20(6):437–41.

    Article  CAS  PubMed  Google Scholar 

  42. Gruy-Kapral C, Emmett M, Santa Ana CA, Porter JL, Fordtran JS, Fine KD. Effect of single dose resin-cathartic therapy on serum potassium concentration in patients with end-stage renal disease. J Am Soc Nephrol. 1998;9(10):1924–30.

    CAS  PubMed  Google Scholar 

  43. Ohlsson A, Hosking M. Complications following oral administration of exchange resins in extremely low-birth-weight infants. Eur J Pediatr. 1987;146(6):571–4.

    Article  CAS  PubMed  Google Scholar 

  44. Malone TA. Glucose and insulin versus cation-exchange resin for the treatment of hyperkalemia in very low birth weight infants. J Pediatr. 1991;118(1):121–3.

    Article  CAS  PubMed  Google Scholar 

  45. Vemgal P, Ohlsson A. Interventions for non-oliguric hyperkalaemia in preterm neonates. Cochrane Database Syst Rev. 2012;(5):CD005257.

    Google Scholar 

  46. Australian Resuscitation C, New Zealand Resuscitation C. Medications and fluids in paediatric advanced life support. ARC and NZRC guideline 2010. Emerg Med Australas: EMA. 2011;23(4):405–8.

    Article  Google Scholar 

  47. Chevalier RL. The moth and the aspen tree: sodium in early postnatal development. Kidney Int. 2001;59(5):1617–25.

    Article  CAS  PubMed  Google Scholar 

  48. Hartnoll G, Betremieux P, Modi N. Randomised controlled trial of postnatal sodium supplementation on body composition in 25 to 30 week gestational age infants. Arch Dis Child Fetal Neonatal Ed. 2000;82(1):F24–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Modi N. Sodium intake and preterm babies. Arch Dis Child. 1993;69(1 Spec No):87–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baraton L, Ancel PY, Flamant C, Orsonneau JL, Darmaun D, Roze JC. Impact of changes in serum sodium levels on 2-year neurologic outcomes for very preterm neonates. Pediatrics. 2009;124(4):e655–61.

    Article  PubMed  Google Scholar 

  51. Ertl T, Hadzsiev K, Vincze O, Pytel J, Szabo I, Sulyok E. Hyponatremia and sensorineural hearing loss in preterm infants. Biol Neonate. 2001;79(2):109–12.

    Article  CAS  PubMed  Google Scholar 

  52. Moritz ML, Ayus JC. Preventing neurological complications from dysnatremias in children. Pediatr Nephrol (Berlin, Germany). 2005;20(12):1687–700.

    Article  Google Scholar 

  53. Prempunpong C, Efanov I, Sant’anna G. The effect of the implementation of therapeutic hypothermia on fluid balance and incidence of hyponatremia in neonates with moderate or severe hypoxic-ischaemic encephalopathy. Acta Paediatr. 2013;102(11):e507–13.

    PubMed  Google Scholar 

  54. Segar JL. Neonatal diuretic therapy: furosemide, thiazides, and spironolactone. Clin Perinatol. 2012;39(1):209–20.

    Article  PubMed  Google Scholar 

  55. Hoch M, Netz H. Heart failure in pediatric patients. Thorac Cardiovasc Surg. 2005;53 Suppl 2:S129–34.

    Article  PubMed  Google Scholar 

  56. Edjo Nkilly G, Michelet D, Hilly J, Diallo T, Greff B, Mangalsuren N, et al. Postoperative decrease in plasma sodium concentration after infusion of hypotonic intravenous solutions in neonatal surgery. Br J Anaesth. 2014;112(3):540–5.

    Article  CAS  PubMed  Google Scholar 

  57. Sumpelmann R, Mader T, Dennhardt N, Witt L, Eich C, Osthaus WA. A novel isotonic balanced electrolyte solution with 1 % glucose for intraoperative fluid therapy in neonates: results of a prospective multicentre observational postauthorisation safety study (PASS). Paediatr Anaesth. 2011;21(11):1114–8.

    Article  PubMed  Google Scholar 

  58. von Rosenstiel N, von Rosenstiel I, Adam D. Management of sepsis and septic shock in infants and children. Paediatr Drugs. 2001;3(1):9–27.

    Article  Google Scholar 

  59. Hsu SC, Levine MA. Perinatal calcium metabolism: physiology and pathophysiology. Semin Neonatol: SN. 2004;9(1):23–36.

    Article  PubMed  Google Scholar 

  60. Saggese G, Baroncelli GI, Bertelloni S, Cipolloni C. Intact parathyroid hormone levels during pregnancy, in healthy term neonates and in hypocalcemic preterm infants. Acta Paediatr Scand. 1991;80(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  61. Karlen J, Aperia A, Zetterstrom R. Renal excretion of calcium and phosphate in preterm and term infants. J Pediatr. 1985;106(5):814–9.

    Article  CAS  PubMed  Google Scholar 

  62. Barnes-Powell LL. Infants of diabetic mothers: the effects of hyperglycemia on the fetus and neonate. Neonatal Netw : NN. 2007;26(5):283–90.

    Article  PubMed  Google Scholar 

  63. Borkenhagen JF, Connor EL, Stafstrom CE. Neonatal hypocalcemic seizures due to excessive maternal calcium ingestion. Pediatr Neurol. 2013;48(6):469–71.

    Article  PubMed  Google Scholar 

  64. Stevens CA, Carey JC, Shigeoka AO. Di George anomaly and velocardiofacial syndrome. Pediatrics. 1990;85(4):526–30.

    CAS  PubMed  Google Scholar 

  65. Chiruvolu A, Engle WD, Sendelbach D, Manning MD, Jackson GL. Serum calcium values in term and late-preterm neonates receiving gentamicin. Pediatr Nephrol (Berlin, Germany). 2008;23(4):569–74.

    Article  Google Scholar 

  66. Friis B, Sardemann H. Neonatal hypocalcaemia after intrauterine exposure to anticonvulsant drugs. Arch Dis Child. 1977;52(3):239–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cote CJ, Drop LJ, Daniels AL, Hoaglin DC. Calcium chloride versus calcium gluconate: comparison of ionization and cardiovascular effects in children and dogs. Anesthesiology. 1987;66(4):465–70.

    Article  CAS  PubMed  Google Scholar 

  68. Hak EB, Crill CM, Bugnitz MC, Mouser JF, Chesney RW. Increased parathyroid hormone and decreased calcitriol during neonatal extracorporeal membrane oxygenation. Intensive Care Med. 2005;31(2):264–70.

    Article  PubMed  Google Scholar 

  69. Pacifici GM. Clinical pharmacology of the loop diuretics furosemide and bumetanide in neonates and infants. Paediatr Drugs. 2012;14(4):233–46.

    Article  PubMed  Google Scholar 

  70. Marx SJ, Attie MF, Spiegel AM, Levine MA, Lasker RD, Fox M. An association between neonatal severe primary hyperparathyroidism and familial hypocalciuric hypercalcemia in three kindreds. N Engl J Med. 1982;306(5):257–64.

    Article  CAS  PubMed  Google Scholar 

  71. Akcay A, Akar M, Oncel MY, Kizilelma A, Erdeve O, Oguz SS, et al. Hypercalcemia due to subcutaneous fat necrosis in a newborn after total body cooling. Pediatr Dermatol. 2013;30(1):120–3.

    Article  PubMed  Google Scholar 

  72. Strohm B, Hobson A, Brocklehurst P, Edwards AD, Azzopardi D, Register UTC. Subcutaneous fat necrosis after moderate therapeutic hypothermia in neonates. Pediatrics. 2011;128(2):e450–2.

    Article  PubMed  Google Scholar 

  73. Allgrove J. Use of bisphosphonates in children and adolescents. J Pediatr Endocrinol Metab. 2002;15 Suppl 3:921–8.

    CAS  PubMed  Google Scholar 

  74. Wilhelm-Bals A, Parvex P, Magdelaine C, Girardin E. Successful use of bisphosphonate and calcimimetic in neonatal severe primary hyperparathyroidism. Pediatrics. 2012;129(3):e812–6.

    Article  PubMed  Google Scholar 

  75. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network (AKIN): report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Feld LG, Springate JE, Fildes RD. Acute renal failure. I. Pathophysiology and diagnosis. J Pediatr. 1986;109(3):401–8.

    Article  CAS  PubMed  Google Scholar 

  77. Askenazi DJ, Griffin R, McGwin G, Carlo W, Ambalavanan N. Acute kidney injury is independently associated with mortality in very low birthweight infants: a matched case-control analysis. Pediatr Nephrol (Berlin, Germany). 2009;24(5):991–7.

    Article  Google Scholar 

  78. Askenazi DJ, Koralkar R, Hundley HE, Montesanti A, Patil N, Ambalavanan N. Fluid overload and mortality are associated with acute kidney injury in sick near-term/term neonate. Pediatr Nephrol (Berlin, Germany). 2013;28(4):661–6.

    Article  Google Scholar 

  79. Selewski DT, Jordan BK, Askenazi DJ, Dechert RE, Sarkar S. Acute kidney injury in asphyxiated newborns treated with therapeutic hypothermia. J Pediatr. 2013;162(4):725–29.e1.

    Article  PubMed  Google Scholar 

  80. Askenazi DJ, Koralkar R, Hundley HE, Montesanti A, Parwar P, Sonjara S, et al. Urine biomarkers predict acute kidney injury in newborns. J Pediatr. 2012;161(2):270–5 e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Askenazi DJ, Montesanti A, Hunley H, Koralkar R, Pawar P, Shuaib F, et al. Urine biomarkers predict acute kidney injury and mortality in very low birth weight infants. J Pediatr. 2011;159(6):907–12 e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Koralkar R, Ambalavanan N, Levitan EB, McGwin G, Goldstein S, Askenazi D. Acute kidney injury reduces survival in very low birth weight infants. Pediatr Res. 2011;69(4):354–8.

    Article  PubMed  Google Scholar 

  83. Phelps CM, Eshelman J, Cruz ED, Pan Z, Kaufman J. Acute kidney injury after cardiac surgery in infants and children: evaluation of the role of angiotensin-converting enzyme inhibitors. Pediatr Cardiol. 2012;33(1):1–7.

    Article  PubMed  Google Scholar 

  84. Aydin SI, Seiden HS, Blaufox AD, Parnell VA, Choudhury T, Punnoose A, et al. Acute kidney injury after surgery for congenital heart disease. Ann Thorac Surg. 2012;94(5):1589–95.

    Article  PubMed  Google Scholar 

  85. Jetton JG, Askenazi DJ. Update on acute kidney injury in the neonate. Curr Opin Pediatr. 2012;24(2):191–6.

    Article  CAS  PubMed  Google Scholar 

  86. Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, et al. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39(6):1493–9.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bagga A, Bakkaloglu A, Devarajan P, Mehta RL, Kellum JA, Shah SV, et al. Improving outcomes from acute kidney injury: report of an initiative. Pediatr Nephrol (Berlin, Germany). 2007;22(10):1655–8.

    Article  Google Scholar 

  88. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):179–84.

    Article  Google Scholar 

  89. Andreoli SP. Acute renal failure in the newborn. Semin Perinatol. 2004;28(2):112–23.

    Article  PubMed  Google Scholar 

  90. Askenazi DJ, Ambalavanan N, Goldstein SL. Acute kidney injury in critically ill newborns: what do we know? What do we need to learn? Pediatr Nephrol (Berlin, Germany). 2009;24(2):265–74.

    Article  Google Scholar 

  91. Agras PI, Tarcan A, Baskin E, Cengiz N, Gurakan B, Saatci U. Acute renal failure in the neonatal period. Ren Fail. 2004;26(3):305–9.

    Article  PubMed  Google Scholar 

  92. Gouyon JB, Guignard JP. Management of acute renal failure in newborns. Pediatr Nephrol (Berlin, Germany). 2000;14(10–11):1037–44.

    Article  CAS  Google Scholar 

  93. Blinder JJ, Goldstein SL, Lee VV, Baycroft A, Fraser CD, Nelson D, et al. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg. 2012;143(2):368–74.

    Article  PubMed  Google Scholar 

  94. Drukker A, Guignard JP. Renal aspects of the term and preterm infant: a selective update. Curr Opin Pediatr. 2002;14(2):175–82.

    Article  PubMed  Google Scholar 

  95. Viswanathan S, Manyam B, Azhibekov T, Mhanna MJ. Risk factors associated with acute kidney injury in extremely low birth weight (ELBW) infants. Pediatr Nephrol (Berlin, Germany). 2012;27(2):303–11.

    Article  Google Scholar 

  96. Walker MW, Clark RH, Spitzer AR. Elevation in plasma creatinine and renal failure in premature neonates without major anomalies: terminology, occurrence and factors associated with increased risk. J Perinatol. 2011;31(3):199–205.

    Article  CAS  PubMed  Google Scholar 

  97. Mortazavi F, Hosseinpour Sakha S, Nejati N. Acute kidney failure in neonatal period. Iran J Kidney Dis. 2009;3(3):136–40.

    PubMed  Google Scholar 

  98. Vachvanichsanong P, McNeil E, Dissaneevate S, Dissaneewate P, Chanvitan P, Janjindamai W. Neonatal acute kidney injury in a tertiary center in a developing country. Nephrol Dial Transplant. 2012;27(3):973–7.

    Article  PubMed  Google Scholar 

  99. Mathur NB, Agarwal HS, Maria A. Acute renal failure in neonatal sepsis. Indian J Pediatr. 2006;73(6):499–502.

    Article  CAS  PubMed  Google Scholar 

  100. Karlowicz MG, Adelman RD. Nonoliguric and oliguric acute renal failure in asphyxiated term neonates. Pediatr Nephrol (Berlin, Germany). 1995;9(6):718–22.

    Article  CAS  Google Scholar 

  101. Gupta BD, Sharma P, Bagla J, Parakh M, Soni JP. Renal failure in asphyxiated neonates. Indian Pediatr. 2005;42(9):928–34.

    CAS  PubMed  Google Scholar 

  102. Durkan AM, Alexander RT. Acute kidney injury post neonatal asphyxia. J Pediatr. 2011;158(2 Suppl):e29–33.

    Article  PubMed  Google Scholar 

  103. Aggarwal A, Kumar P, Chowdhary G, Majumdar S, Narang A. Evaluation of renal functions in asphyxiated newborns. J Trop Pediatr. 2005;51(5):295–9.

    Article  PubMed  Google Scholar 

  104. Kaur S, Jain S, Saha A, Chawla D, Parmar VR, Basu S, et al. Evaluation of glomerular and tubular renal function in neonates with birth asphyxia. Ann Trop Paediatr. 2011;31(2):129–34.

    Article  CAS  PubMed  Google Scholar 

  105. Subramanian S, Agarwal R, Deorari AK, Paul VK, Bagga A. Acute renal failure in neonates. Indian J Pediatr. 2008;75(4):385–91.

    Article  PubMed  Google Scholar 

  106. Black RE, Cousens S, Johnson HL, Lawn JE, Rudan I, Bassani DG, et al. Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet. 2010;375(9730):1969–87.

    Article  PubMed  Google Scholar 

  107. Cuzzolin L, Fanos V, Pinna B, di Marzio M, Perin M, Tramontozzi P, et al. Postnatal renal function in preterm newborns: a role of diseases, drugs and therapeutic interventions. Pediatr Nephrol (Berlin, Germany). 2006;21(7):931–8.

    Article  Google Scholar 

  108. Twombley K, Baum M, Gattineni J. Accidental and iatrogenic causes of acute kidney injury. Curr Opin Pediatr. 2011;23(2):208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Taber SS, Mueller BA. Drug-associated renal dysfunction. Crit Care Clin. 2006;22(2):357–74, viii.

    Article  CAS  PubMed  Google Scholar 

  110. Nestaas E, Bangstad HJ, Sandvik L, Wathne KO. Aminoglycoside extended interval dosing in neonates is safe and effective: a meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2005;90(4):F294–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rao SC, Srinivasjois R, Hagan R, Ahmed M. One dose per day compared to multiple doses per day of gentamicin for treatment of suspected or proven sepsis in neonates. Cochrane Database Syst Rev. 2011;(11):CD005091.

    Google Scholar 

  112. Kumar G, Vasudevan A. Management of acute kidney injury. Indian J Pediatr. 2012;79(8):1069–75.

    Article  PubMed  Google Scholar 

  113. Sweetman DU, Riordan M, Molloy EJ. Management of renal dysfunction following term perinatal hypoxia-ischaemia. Acta Paediatr. 2013;102(3):233–41.

    Article  PubMed  Google Scholar 

  114. Moghal NE, Embleton ND. Management of acute renal failure in the newborn. Semin Fetal Neonatal Med. 2006;11(3):207–13.

    Article  PubMed  Google Scholar 

  115. Maitland K, Kiguli S, Opoka RO, Engoru C, Olupot-Olupot P, Akech SO, et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011;364(26):2483–95.

    Article  CAS  PubMed  Google Scholar 

  116. Cantarovich F, Rangoonwala B, Lorenz H, Verho M, Esnault VL. High-dose furosemide for established ARF: a prospective, randomized, double-blind, placebo-controlled, multicenter trial. Am J Kidney Dis. 2004;44(3):402–9.

    Article  CAS  PubMed  Google Scholar 

  117. Chiravuri SD, Riegger LQ, Christensen R, Butler RR, Malviya S, Tait AR, et al. Factors associated with acute kidney injury or failure in children undergoing cardiopulmonary bypass: a case-controlled study. Paediatr Anaesth. 2011;21(8):880–6.

    Article  PubMed  Google Scholar 

  118. Moghal NE, Shenoy M. Furosemide and acute kidney injury in neonates. Arch Dis Child Fetal Neonatal Ed. 2008;93(4):F313–6.

    Article  CAS  PubMed  Google Scholar 

  119. Luciani GB, Nichani S, Chang AC, Wells WJ, Newth CJ, Starnes VA. Continuous versus intermittent furosemide infusion in critically ill infants after open heart operations. Ann Thorac Surg. 1997;64(4):1133–9.

    Article  CAS  PubMed  Google Scholar 

  120. Oliveros M, Pham JT, John E, Resheidat A, Bhat R. The use of bumetanide for oliguric acute renal failure in preterm infants. Pediatr Care Med: J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2011;12(2):210–4.

    Article  Google Scholar 

  121. Cotton R, Suarez S, Reese J. Unexpected extra-renal effects of loop diuretics in the preterm neonate. Acta Paediatr. 2012;101(8):835–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Seri I, Abbasi S, Wood DC, Gerdes JS. Regional hemodynamic effects of dopamine in the sick preterm neonate. J Pediatr. 1998;133(6):728–34.

    Article  CAS  PubMed  Google Scholar 

  123. Lynch SK, Lemley KV, Polak MJ. The effect of dopamine on glomerular filtration rate in normotensive, oliguric premature neonates. Pediatr Nephrol. 2003;18(7):649–52.

    PubMed  Google Scholar 

  124. Seri I, Abbasi S, Wood DC, Gerdes JS. Regional hemodynamic effects of dopamine in the indomethacin-treated preterm infant. J Perinatol. 2002;22(4):300–5.

    Article  PubMed  Google Scholar 

  125. Prins I, Plotz FB, Uiterwaal CS, van Vught HJ. Low-dose dopamine in neonatal and pediatric intensive care: a systematic review. Intensive Care Med. 2001;27(1):206–10.

    Article  CAS  PubMed  Google Scholar 

  126. Lauschke A, Teichgraber UK, Frei U, Eckardt KU. ‘Low-dose’ dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int. 2006;69(9):1669–74.

    Article  CAS  PubMed  Google Scholar 

  127. Costello JM, Thiagarajan RR, Dionne RE, Allan CK, Booth KL, Burmester M, et al. Initial experience with fenoldopam after cardiac surgery in neonates with an insufficient response to conventional diuretics. Pediatr Care Med: J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2006;7(1):28–33.

    Article  Google Scholar 

  128. Ricci Z, Stazi GV, Di Chiara L, Morelli S, Vitale V, Giorni C, et al. Fenoldopam in newborn patients undergoing cardiopulmonary bypass: controlled clinical trial. Interact Cardiovasc Thorac Surg. 2008;7(6):1049–53.

    Article  PubMed  Google Scholar 

  129. Ricci Z, Luciano R, Favia I, Garisto C, Muraca M, Morelli S, et al. High-dose fenoldopam reduces postoperative neutrophil gelatinase-associated lipocaline and cystatin C levels in pediatric cardiac surgery. Crit Care. 2011;15(3):R160.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Jenik AG, Ceriani Cernadas JM, Gorenstein A, Ramirez JA, Vain N, Armadans M, et al. A randomized, double-blind, placebo-controlled trial of the effects of prophylactic theophylline on renal function in term neonates with perinatal asphyxia. Pediatrics. 2000;105(4):E45.

    Article  CAS  PubMed  Google Scholar 

  131. Lynch BA, Gal P, Ransom JL, Carlos RQ, Dimaguila MA, Smith MS, et al. Low-dose aminophylline for the treatment of neonatal non-oliguric renal failure-case series and review of the literature. J Pediatr Pharmacol Ther: JPPT: Off J PPAG. 2008;13(2):80–7.

    Google Scholar 

  132. Bakr AF. Prophylactic theophylline to prevent renal dysfunction in newborns exposed to perinatal asphyxia – a study in a developing country. Pediatr Nephrol. 2005;20(9):1249–52.

    Article  PubMed  Google Scholar 

  133. Bhat MA, Shah ZA, Makhdoomi MS, Mufti MH. Theophylline for renal function in term neonates with perinatal asphyxia: a randomized, placebo-controlled trial. J Pediatr. 2006;149(2):180–4.

    Article  CAS  PubMed  Google Scholar 

  134. Eslami Z, Shajari A, Kheirandish M, Heidary A. Theophylline for prevention of kidney dysfunction in neonates with severe asphyxia. Iran J Kidney Dis. 2009;3(4):222–6.

    PubMed  Google Scholar 

  135. Tsai HM. The kidney in thrombotic thrombocytopenic purpura. Minerva Med. 2007;98(6):731–47.

    PubMed  PubMed Central  Google Scholar 

  136. Hobbs DJ, Steinke JM, Chung JY, Barletta GM, Bunchman TE. Rasburicase improves hyperuricemia in infants with acute kidney injury. Pediatr Nephrol. 2010;25(2):305–9.

    Article  PubMed  Google Scholar 

  137. Cataldi L, Leone R, Moretti U, De Mitri B, Fanos V, Ruggeri L, et al. Potential risk factors for the development of acute renal failure in preterm newborn infants: a case-control study. Arch Dis Child Fetal Neonatal Ed. 2005;90(6):F514–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gillespie RS, Seidel K, Symons JM. Effect of fluid overload and dose of replacement fluid on survival in hemofiltration. Pediatr Nephrol (Berlin, Germany). 2004;19(12):1394–9.

    Article  Google Scholar 

  139. Foland JA, Fortenberry JD, Warshaw BL, Pettignano R, Merritt RK, Heard ML, et al. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32(8):1771–6.

    Article  PubMed  Google Scholar 

  140. Goldstein SL, Somers MJ, Baum MA, Symons JM, Brophy PD, Blowey D, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67(2):653–8.

    Article  PubMed  Google Scholar 

  141. Sutherland SM, Zappitelli M, Alexander SR, Chua AN, Brophy PD, Bunchman TE, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis: Off J Natl Kidney Found. 2010;55(2):316–25.

    Article  Google Scholar 

  142. Askenazi DJ, Goldstein SL, Koralkar R, Fortenberry J, Baum M, Hackbarth R, et al. Continuous renal replacement therapy for children </=10 kg: a report from the prospective pediatric continuous renal replacement therapy registry. J Pediatr. 2013;162(3):587–92 e3.

    Article  PubMed  Google Scholar 

  143. Duzova A, Bakkaloglu A, Kalyoncu M, Poyrazoglu H, Delibas A, Ozkaya O, et al. Etiology and outcome of acute kidney injury in children. Pediatr Nephrol (Berlin, Germany). 2010;25(8):1453–61.

    Article  Google Scholar 

  144. Kyle UG, Akcan-Arikan A, Orellana RA, Coss-Bu JA. Nutrition support among critically ill children with AKI. Clin J Am Soc Nephrol. 2013;8(4):568–74.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hakan N, Aydin M, Zenciroglu A, Aydog O, Erdogan D, Karagol BS, et al. Acute peritoneal dialysis in the newborn period: a 7-year single-center experience at tertiary neonatal intensive care unit in Turkey. Am J Perinatol. 2014;31(4):335–8.

    Article  PubMed  Google Scholar 

  146. Sadowski RH, Harmon WE, Jabs K. Acute hemodialysis of infants weighing less than five kilograms. Kidney Int. 1994;45(3):903–6.

    Article  CAS  PubMed  Google Scholar 

  147. Barratt TM. Renal failure in the first year of life. Br Med Bull. 1971;27(2):115–21.

    Article  CAS  PubMed  Google Scholar 

  148. Warady BA, Bunchman T. Dialysis therapy for children with acute renal failure: survey results. Pediatr Nephrol (Berlin, Germany). 2000;15(1–2):11–3.

    Article  CAS  Google Scholar 

  149. Picca S, Dionisi-Vici C, Abeni D, Pastore A, Rizzo C, Orzalesi M, et al. Extracorporeal dialysis in neonatal hyperammonemia: modalities and prognostic indicators. Pediatr Nephrol. 2001;16(11):862–7.

    Article  CAS  PubMed  Google Scholar 

  150. Jouvet P, Jugie M, Rabier D, Desgres J, Hubert P, Saudubray JM, et al. Combined nutritional support and continuous extracorporeal removal therapy in the severe acute phase of maple syrup urine disease. Intensive Care Med. 2001;27(11):1798–806.

    Article  CAS  PubMed  Google Scholar 

  151. Schaefer F, Straube E, Oh J, Mehls O, Mayatepek E. Dialysis in neonates with inborn errors of metabolism. Nephrol Dial Transplant. 1999;14(4):910–8.

    Article  CAS  PubMed  Google Scholar 

  152. Summar M. Current strategies for the management of neonatal urea cycle disorders. J Pediatr. 2001;138(1 Suppl):S30–9.

    Article  CAS  PubMed  Google Scholar 

  153. Haberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Pela I, Seracini D, Donati MA, Lavoratti G, Pasquini E, Materassi M. Peritoneal dialysis in neonates with inborn errors of metabolism: is it really out of date? Pediatr Nephrol. 2008;23(1):163–8.

    Article  PubMed  Google Scholar 

  155. Chadha V, Warady BA, Blowey DL, Simckes AM, Alon US. Tenckhoff catheters prove superior to cook catheters in pediatric acute peritoneal dialysis. Am J Kidney Dis. 2000;35(6):1111–6.

    Article  CAS  PubMed  Google Scholar 

  156. Stone ML, LaPar DJ, Barcia JP, Norwood VF, Mulloy DP, McGahren ED, et al. Surgical outcomes analysis of pediatric peritoneal dialysis catheter function in a rural region. J Pediatr Surg. 2013;48(7):1520–7.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Golej J, Kitzmueller E, Hermon M, Boigner H, Burda G, Trittenwein G. Low-volume peritoneal dialysis in 116 neonatal and paediatric critical care patients. Eur J Pediatr. 2002;161(7):385–9.

    Article  PubMed  Google Scholar 

  158. Paulson WD, Bock GH, Nelson AP, Moxey-Mims MM, Crim LM. Hyponatremia in the very young chronic peritoneal dialysis patient. Am J Kidney Dis. 1989;14(3):196–9.

    Article  CAS  PubMed  Google Scholar 

  159. Ricci Z, Morelli S, Ronco C, Polito A, Stazi GV, Giorni C, et al. Inotropic support and peritoneal dialysis adequacy in neonates after cardiac surgery. Interact Cardiovasc Thorac Surg. 2008;7(1):116–20.

    Article  PubMed  Google Scholar 

  160. Fischbach M. Peritoneal dialysis prescription for neonates. Perit Dial Int. 1996;16 Suppl 1:S512–4.

    PubMed  Google Scholar 

  161. Warady BA, Alexander SR, Hossli S, Vonesh E, Geary D, Watkins S, et al. Peritoneal membrane transport function in children receiving long-term dialysis. J Am Soc Nephrol. 1996;7(11):2385–91.

    CAS  PubMed  Google Scholar 

  162. Egi M, Morimatsu H, Toda Y, Matsusaki T, Suzuki S, Shimizu K, et al. Hyperglycemia and the outcome of pediatric cardiac surgery patients requiring peritoneal dialysis. Int J Artif Organs. 2008;31(4):309–16.

    CAS  PubMed  Google Scholar 

  163. Bojan M, Gioanni S, Vouhe PR, Journois D, Pouard P. Early initiation of peritoneal dialysis in neonates and infants with acute kidney injury following cardiac surgery is associated with a significant decrease in mortality. Kidney Int. 2012;82(4):474–81.

    Article  CAS  PubMed  Google Scholar 

  164. Sasser WC, Dabal RJ, Askenazi DJ, Borasino S, Moellinger AB, Kirklin JK, et al. Prophylactic peritoneal dialysis following cardiopulmonary bypass in children is associated with decreased inflammation and improved clinical outcomes. Congenit Heart Dis. 2014;9(2):106–15.

    Article  PubMed  Google Scholar 

  165. Santiago MJ, Lopez-Herce J, Urbano J, Solana MJ, del Castillo J, Ballestero Y, et al. Complications of continuous renal replacement therapy in critically ill children: a prospective observational evaluation study. Crit Care. 2009;13(6):R184.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Hackbarth R, Bunchman TE, Chua AN, Somers MJ, Baum M, Symons JM, et al. The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: a report from the PPCRRT registry. Int J Artif Organs. 2007;30(12):1116–21.

    CAS  PubMed  Google Scholar 

  167. El Masri K, Jackson K, Borasino S, Law M, Askenazi D, Alten J. Successful continuous renal replacement therapy using two single-lumen catheters in neonates and infants with cardiac disease. Pediatr Nephrol (Berlin, Germany). 2013;28(12):2383–7.

    Article  Google Scholar 

  168. Symons JM, Chua AN, Somers MJ, Baum MA, Bunchman TE, Benfield MR, et al. Demographic characteristics of pediatric continuous renal replacement therapy: a report of the prospective pediatric continuous renal replacement therapy registry. Clin J Am Soc Nephrol: CJASN. 2007;2(4):732–8.

    Article  PubMed  Google Scholar 

  169. Rodl S, Marschitz I, Mache CJ, Koestenberger M, Madler G, Zobel G. Continuous renal replacement therapy with Prismaflex HF20 disposable set in children from 4 to 15 kg. Asaio J. 2011;57(5):451–5.

    Article  PubMed  Google Scholar 

  170. Bouman CS, van Olden RW, Stoutenbeek CP. Cytokine filtration and adsorption during pre- and postdilution hemofiltration in four different membranes. Blood Purif. 1998;16(5):261–8.

    Article  CAS  PubMed  Google Scholar 

  171. Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lo S, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361(17):1627–38.

    Article  PubMed  Google Scholar 

  172. Thompson AJ. Drug dosing during continuous renal replacement therapies. J Pediatr Pharmacol Ther: JPPT: Off J PPAG. 2008;13(2):99–113.

    Google Scholar 

  173. Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST, Choudhury D, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359(1):7–20.

    Article  CAS  PubMed  Google Scholar 

  174. Hothi DK, St George-Hyslop C, Geary D, Bohn D, Harvey E. Continuous renal replacement therapy (CRRT) in children using the AQUARIUS. Nephrol Dial Transplant. 2006;21(8):2296–300.

    Article  PubMed  Google Scholar 

  175. Yagi N, Leblanc M, Sakai K, Wright EJ, Paganini EP. Cooling effect of continuous renal replacement therapy in critically ill patients. Am J Kidney Dis. 1998;32(6):1023–30.

    Article  CAS  PubMed  Google Scholar 

  176. Thermal protection of the newborn: a practical guide. Geneva: World Health Organization, 1997 WHO/RHT/MSM/97.2

    Google Scholar 

  177. Coulthard MG, Crosier J, Griffiths C, Smith J, Drinnan M, Whitaker M, et al. Haemodialysing babies weighing <8 kg with the Newcastle infant dialysis and ultrafiltration system (Nidus): comparison with peritoneal and conventional haemodialysis. Pediatr Nephrol (Berlin, Germany). 2014;29(10):1873–81.

    Article  Google Scholar 

  178. Ronco C, Garzotto F, Ricci Z. CA.R.PE.DI.E.M. (Cardio-Renal Pediatric Dialysis Emergency Machine): evolution of continuous renal replacement therapies in infants. A personal journey. Pediatr Nephrol. 2012;27(8):1203–11.

    Article  PubMed  Google Scholar 

  179. Kreuzer M, Ehrich JH, Pape L. Haemorrhagic complications in paediatric dialysis-dependent acute kidney injury: incidence and impact on outcome. Nephrol Dial Transplant. 2010;25(4):1140–6.

    Article  PubMed  Google Scholar 

  180. Monagle P, Chan AK, Goldenberg NA, Ichord RN, Journeycake JM, Nowak-Gottl U, et al. Antithrombotic therapy in neonates and children: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e737S–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chander A, Nagel K, Wiernikowski J, Paes B, Chan AK. Evaluation of the use of low-molecular-weight heparin in neonates: a retrospective, single-center study. Clin Appl Thromb Hemost: Off J Int Acad Clin Appl Thromb/Hemost. 2013;19(5):488–93.

    Article  CAS  Google Scholar 

  182. Brophy PD, Somers MJ, Baum MA, Symons JM, McAfee N, Fortenberry JD, et al. Multi-centre evaluation of anticoagulation in patients receiving continuous renal replacement therapy (CRRT). Nephrol Dial Transplant. 2005;20(7):1416–21.

    Article  PubMed  Google Scholar 

  183. Soltysiak J, Warzywoda A, Kocinski B, Ostalska-Nowicka D, Benedyk A, Silska-Dittmar M, et al. Citrate anticoagulation for continuous renal replacement therapy in small children. Pediatr Nephrol (Berlin, Germany). 2014;29(3):469–75.

    Article  Google Scholar 

  184. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71(10):1028–35.

    Article  CAS  PubMed  Google Scholar 

  185. Zappitelli M, Parikh CR, Akcan-Arikan A, Washburn KK, Moffett BS, Goldstein SL. Ascertainment and epidemiology of acute kidney injury varies with definition interpretation. Clin J Am Soc Nephrol: CJASN. 2008;3(4):948–54.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int. 2008;73(5):538–46.

    Article  CAS  PubMed  Google Scholar 

  187. Cuhaci B. More data on epidemiology and outcome of acute kidney injury with AKIN criteria: benefits of standardized definitions, AKIN and RIFLE classifications. Crit Care Med. 2009;37(9):2659–61.

    Article  PubMed  Google Scholar 

  188. Uchino S. Outcome prediction for patients with acute kidney injury. Nephron Clin Pract. 2008;109(4):c217–23.

    Article  PubMed  Google Scholar 

  189. Macedo E, Castro I, Yu L, Abdulkader RR, Vieira Jr JM. Impact of mild acute kidney injury (AKI) on outcome after open repair of aortic aneurysms. Ren Fail. 2008;30(3):287–96.

    Article  PubMed  Google Scholar 

  190. Bagshaw SM, George C, Bellomo R. Changes in the incidence and outcome for early acute kidney injury in a cohort of Australian intensive care units. Crit Care. 2007;11(3):R68.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Carmody JB, Charlton JR. Short-term gestation, long-term risk: prematurity and chronic kidney disease. Pediatrics. 2013;131(6):1168–79.

    Article  PubMed  Google Scholar 

  192. Faa G, Gerosa C, Fanni D, Nemolato S, Locci A, Cabras T, et al. Marked interindividual variability in renal maturation of preterm infants: lessons from autopsy. J Matern Fetal Neonatal Med. 2010;23 Suppl 3:129–33.

    Article  PubMed  Google Scholar 

  193. Sutherland MR, Gubhaju L, Moore L, Kent AL, Dahlstrom JE, Horne RS, et al. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol. 2011;22(7):1365–74.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens. 1988;1(4 Pt 1):335–47.

    Article  CAS  PubMed  Google Scholar 

  195. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis: Off J Natl Kidney Found. 2009;54(2):248–61.

    Article  Google Scholar 

  196. Basile DP. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int. 2007;72(2):151–6.

    Article  CAS  PubMed  Google Scholar 

  197. Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL. 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int. 2006;69(1):184–9.

    Article  CAS  PubMed  Google Scholar 

  198. Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis: Off J Natl Kidney Found. 2012;59(4):523–30.

    Article  Google Scholar 

  199. Weiss AS, Sandmaier BM, Storer B, Storb R, McSweeney PA, Parikh CR. Chronic kidney disease following non-myeloablative hematopoietic cell transplantation. Am J Transplant. 2006;6(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  200. Wald R, Quinn RR, Luo J, Li P, Scales DC, Mamdani MM, et al. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA. 2009;302(11):1179–85.

    Article  CAS  PubMed  Google Scholar 

  201. Newsome BB, Warnock DG, McClellan WM, Herzog CA, Kiefe CI, Eggers PW, et al. Long-term risk of mortality and end-stage renal disease among the elderly after small increases in serum creatinine level during hospitalization for acute myocardial infarction. Arch Intern Med. 2008;168(6):609–16.

    Article  CAS  PubMed  Google Scholar 

  202. Lo LJ, Go AS, Chertow GM, McCulloch CE, Fan D, Ordoñez JD, et al. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int. 2009;76(8):893–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lafrance JP, Djurdjev O, Levin A. Incidence and outcomes of acute kidney injury in a referred chronic kidney disease cohort. Nephrol Dial Transplant. 2010;25(7):2203–9.

    Article  PubMed  Google Scholar 

  204. James MT, Hemmelgarn BR, Wiebe N, Pannu N, Manns BJ, Klarenbach SW, et al. Glomerular filtration rate, proteinuria, and the incidence and consequences of acute kidney injury: a cohort study. Lancet. 2010;376(9758):2096–103.

    Article  PubMed  Google Scholar 

  205. James MT, Ghali WA, Tonelli M, Faris P, Knudtson ML, Pannu N, et al. Acute kidney injury following coronary angiography is associated with a long-term decline in kidney function. Kidney Int. 2010;78(8):803–9.

    Article  PubMed  Google Scholar 

  206. Ishani A, Xue JL, Himmelfarb J, Eggers PW, Kimmel PL, Molitoris BA, et al. Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol. 2009;20(1):223–8.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Ishani A, Nelson D, Clothier B, Schult T, Nugent S, Greer N, et al. The magnitude of acute serum creatinine increase after cardiac surgery and the risk of chronic kidney disease, progression of kidney disease, and death. Arch Intern Med. 2011;171(3):226–33.

    Article  PubMed  Google Scholar 

  208. Hsu CY, Chertow GM, McCulloch CE, Fan D, Ordoñez JD, Go AS. Nonrecovery of kidney function and death after acute on chronic renal failure. Clin J Am Soc Nephrol. 2009;4(5):891–8.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Choi AI, Li Y, Parikh C, Volberding PA, Shlipak MG. Long-term clinical consequences of acute kidney injury in the HIV-infected. Kidney Int. 2010;78(5):478–85.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Ando M, Ohashi K, Akiyama H, Sakamaki H, Morito T, Tsuchiya K, et al. Chronic kidney disease in long-term survivors of myeloablative allogeneic haematopoietic cell transplantation: prevalence and risk factors. Nephrol Dial Transplant. 2010;25(1):278–82.

    Article  PubMed  Google Scholar 

  211. Amdur RL, Chawla LS, Amodeo S, Kimmel PL, Palant CE. Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int. 2009;76(10):1089–97.

    Article  PubMed  Google Scholar 

  212. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8.

    Article  PubMed  Google Scholar 

  213. Abitbol CL, Bauer CR, Montane B, Chandar J, Duara S, Zilleruelo G. Long-term follow-up of extremely low birth weight infants with neonatal renal failure. Pediatr Nephrol (Berlin, Germany). 2003;18(9):887–93.

    Article  Google Scholar 

  214. Askenazi D, Koralkar R, Levitan EB, Goldstein SL, Devarajan P, Khandrika S, Mehta R, Ambalavanan N. Baseline values of candidate urine Acute Kidney Injury (AKI) biomarkers vary by gestational age in premature infants. Pediatr Res. 2011;70(3):302–6.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Lavery AP, Meinzen-Derr JK, Anderson E, Ma Q, Bennett MR, Devarajan P, et al. Urinary NGAL in premature infants. Pediatr Res. 2008;64(4):423–8.

    Article  CAS  PubMed  Google Scholar 

  216. Bennett M, Dent CL, Ma Q, Dastrala S, Grenier F, Workman R, et al. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol: CJASN. 2008;3(3):665–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Devarajan P, Krawczeski CD, Nguyen MT, Kathman T, Wang Z, Parikh CR. Proteomic identification of early biomarkers of acute kidney injury after cardiac surgery in children. Am J Kidney Dis: Off J Natl Kidney Found. 2010;56(4):632–42.

    Article  CAS  Google Scholar 

  218. Koyner JL, Garg AX, Shlipak MG, Patel UD, Sint K, Hong K, et al. Urinary cystatin C and acute kidney injury after cardiac surgery. Am J Kidney Dis: Off J Natl Kidney Found. 2013;61(5):730–8.

    Article  CAS  Google Scholar 

  219. Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58(22):2301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Krawczeski CD, Woo JG, Wang Y, Bennett MR, Ma Q, Devarajan P. Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass. J Pediatr. 2011;158(6):1009–15 e1.

    Article  CAS  PubMed  Google Scholar 

  221. Liangos O, Tighiouart H, Perianayagam MC, Kolyada A, Han WK, Wald R, et al. Comparative analysis of urinary biomarkers for early detection of acute kidney injury following cardiopulmonary bypass. Biomarkers. 2009;14(6):423–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  222. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8.

    Article  CAS  PubMed  Google Scholar 

  223. Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70(1):199–203.

    Article  CAS  PubMed  Google Scholar 

  224. Ramesh G, Krawczeski CD, Woo JG, Wang Y, Devarajan P. Urinary netrin-1 is an early predictive biomarker of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol: CJASN. 2010;5(3):395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ronco C, Davenport A, Gura V. The future of the artificial kidney: moving towards wearable and miniaturized devices. Nefrol: Publicacion Oficial Soc Esp Nefrol. 2011;31(1):9–16.

    CAS  Google Scholar 

  226. Lowrie LH. Renal replacement therapies in pediatric multiorgan dysfunction syndrome. Pediatr Nephrol. 2000;14(1):6–12. PMID: 10654321.

    Google Scholar 

  227. Fleming F, Bohn D, Edwards H, Cox P, Geary D, McCrindle BW, et al. Renal replacement therapy after repair of congenital heart disease in children. A comparison of hemofiltration and peritoneal dialysis. J Thorac Cardiovasc Surg. 1995;109(2):322–31. PMID: 7853885.

    Google Scholar 

  228. Golej J, Kitzmueller E, Hermon M, Boigner H, Burda G, Trittenwein G. Low-volume peritoneal dialysis in 116 neonatal and paediatric critical care patients. Eur J Pediatr. 2002;161(7):385–9. Epub 2002 May 9. PMID: 12111191.

    Google Scholar 

  229. Werner HA, Wensley DF, Lirenman DS, LeBlanc JG. Peritoneal dialysis in children after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1997;113(1):64–8; discussion 68–70. PMID: 9011703.

    Google Scholar 

  230. Dittrich S, Dähnert I, Vogel M, Stiller B, Haas NA, Alexi-Meskishvili V, et al. Peritoneal dialysis after infant open heart surgery: observations in 27 patients. Ann Thorac Surg. 1999;68(1):160–3. PMID: 10421133.

    Google Scholar 

  231. Santos CR, Branco PQ, Gaspar A, Bruges M, Anjos R, Gonçalves MS, et al. Use of peritoneal dialysis after surgery for congenital heart disease in children. Perit Dial Int. 2012;32(3):273–9. doi: 10.3747/pdi.2009.00239. Epub 2011 May 31. PMID: 21632441; PMCID: PMC3525423.

    Google Scholar 

  232. Sorof JM, Stromberg D, Brewer ED, Feltes TF, Fraser CD Jr. Early initiation of peritoneal dialysis after surgical repair of congenital heart disease. Pediatr Nephrol. 1999;13(8):641–5. PMID: 10502118.

    Google Scholar 

  233. Chien CC, Wang HY, Chien TW, Kan WC, Su SB, Lin CY. A reference equation for objectively adjusting dwell volume to obtain more ultrafiltration in daily practice of peritoneal dialysis. Ren Fail. 2010;32(2):185–91. doi: 10.3109/08860220903541127. PMID: 20199180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Askenazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Askenazi, D., Picca, S., Guzzo, I. (2016). Neonatal Kidney Dysfunction. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics