Skip to main content
Log in

New Bioactive Oxylipins Formed by Non-Enzymatic Free-Radical-Catalyzed Pathways: the Phytoprostanes

  • Review
  • Published:
Lipids

Abstract

In animals and plants, fatty acids with at least three double bonds can be oxidized to prostaglandin-like compounds via enzymatic and non-enzymatic pathways. The most common fatty acid precursor in mammals is arachidonic acid (C20:4) (AA) which can be converted through the cyclooxygenase pathway to a series of prostaglandins (PG). Non-enzymatic cyclization of arachidonate yields a series of isoprostanes (IsoP) which comprises all PG (minor compounds) as well as PG isomers that cannot be formed enzymatically. In contrast, in plants, α-linolenic acid (C18:3) (ALA) is the most common substrate for the allene oxide synthase pathway leading to the jasmonate (JA) family of lipid mediators. Non-enzymatic oxidation of linolenate leads to a series of C18-IsoPs termed dinor IsoP or phytoprostanes (PP). PP structurally resemble JA but cannot be formed enzymatically. We will give an overview of the biological activity of the different classes of PP and also discuss their analytical applications and the strategies developed so far for the total synthesis of PP, depending on the synthetic approaches according to the targets and which key steps serve to access the natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

Ac:

Acetyl

ALA:

α-Linolenic acid

Bet-APE:

Betula alba L. aqueous pollen extracts

BINAL-H:

Lithium (1,1′-binaphthyl-2,2′-dioxy) aluminum dihydride

Bz:

Benzoyl

BzCl:

Benzoylchloride

CAL-B:

Candida antarctica lipase B

CH2N2 :

Diazomethane

Co2(CO)6 :

Hexacarbonyldicobalt complex

COI1:

Coronatine-insensitive1 (COI1)

CuSO4 :

Copper sulfate

DABCO:

Diazabicyclo[2.2.2]octane

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCE:

1,2-Dichloroethane

DCM:

Dichloromethane

DMF:

Dimethylformamide

DMP:

Dess-Martin Periodinane

DMSO:

Dimethylsulfoxide

dPPJ1 :

Deoxy-J1-Phytoprostane

GC:

Gas chromatography

GC–MS:

Gas chromatography–mass spectrometry

HEK cell:

Human embryonic kidney cell

HPLC:

High performance liquid Chromatography

HPLC–ESI–MS/MS:

High performance liquid chromatography–Electrospray tandem mass spectrometry

HWE:

Horner–Wadsworth–Emmons

IL:

Interleukin

IsoP:

Isoprostane

JA:

Jasmonic acid

JA-Ile:

Isoleucine–jasmonic acid conjugate

KHMDS:

Potassium hexamethyldisilazide

KOH:

Potassium hydroxide

LAH (LiAlH4):

Lithium aluminum hydride

LC:

Liquid chromatography

LiHMDS:

Lithium hexamethyldisilazide

MAPK:

Mitogen-activated protein kinases

MeAlCl2:

Methyl aluminum dichloride

mRNA:

Messenger ribonucleic acid

MS:

Mass spectrometry

NaH:

Sodium hydride

NaHMDS:

Sodium hexamethyldisilazide

NaOH:

Sodium hydroxide

NEt3 :

Triethylamine

NeuroP:

Neuroprostane

NF-κB:

Nuclear factor-kappa B

NICI:

Negative ion capture chemical ionization

NMO:

N-Methylmorpholine N-oxide

[18O3]PPE1:

Oxygen-18-labeled phytoprostane E1

OPDA:

12-Oxophytodienoic acid

PAL:

Phenylalanine ammonia lyase

Pd(OAc)2 :

Palladium II acetate

PG:

Prostaglandin

PP:

Phytoprostane

PPA1 :

Phytoprostane A1

PPAR:

Peroxisome proliferator-activated receptor

PPB1 :

Phytoprostane B1

PPD1 :

Phytoprostane D1

PPE1 :

Phytoprostane E1

PPF1 :

Phytoprostane F1

PPG1 :

Phytoprostane G1

PPh3 :

Triphenylphosphine

PPJ1 :

Phytoprostane J1

PUFA:

Polyunsaturated fatty acid

Pyr.:

Pyridine

ROS:

Reactive oxygen species

r. t.:

Room temperature

SPE:

Solid phase extraction

TBDPS:

Tert-butyldiphenylsilyl

TBS:

Tert-butyldimethylsilyl

TEA:

Triethylamine

TES:

Triethylsilyl

TFA:

Trifluoroacetic acid

TGA:

Transcription factors

THF:

Tetrahydrofuran

THP:

Tetrahydropyran-2-yl

Ts:

Tosyl

TsCl:

Tosyl chloride

UV:

Ultra-violet

References

  1. Nugteren D, Vonkeman H, van Dorp D (1967) Non-enzymatic conversion of all-cis 8, 11, 14-eicosatrienoic acid into prostaglandin E1. Recl Trav Chim Pays Bas 86:1237–1245

    CAS  Google Scholar 

  2. Roberts LJ II, Morrow JD (2000) Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28:505–513

    Article  CAS  PubMed  Google Scholar 

  3. Conconi A, Miquel M, Browse JA, Ryan CA (1996) Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiol 111:797–803

    CAS  PubMed  Google Scholar 

  4. Mueller MJ (1997) Enzymes involved in jasmonic acid biosynthesis. Physiol Plant 100:653–663

    Article  CAS  Google Scholar 

  5. Rokach J, Khanapure SP, Hwang SW, Adiyaman M, Lawson JA, FitzGerald GA (1997) Nomenclature of isoprostanes: a proposal. Prostaglandins 54:853–873

    Article  CAS  PubMed  Google Scholar 

  6. Parchmann S, Mueller MJ (1998) Evidence for the formation of dinor isoprostanes E1 from alpha-linolenic acid in plants. J Biol Chem 273:32650–32655

    Article  CAS  PubMed  Google Scholar 

  7. Imbusch R, Mueller MJ (2000) Formation of isoprostane F(2)-like compounds (phytoprostanes F(1)) from alpha-linolenic acid in plants. Free Radic Biol Med 28:720–726

    Article  CAS  PubMed  Google Scholar 

  8. Mueller MJ, Mene-Saffrane L, Grun C, Karg K, Farmer EE (2006) Oxylipin analysis methods. Plant J 45:472–489

    Article  CAS  PubMed  Google Scholar 

  9. Imbusch R, Mueller MJ (2000) Analysis of oxidative stress and wound-inducible dinor isoprostanes F(1) (phytoprostanes F(1)) in plants. Plant Physiol 124:1293–1304

    Article  CAS  PubMed  Google Scholar 

  10. Krischke M, Loeffler C, Mueller MJ (2003) Biosynthesis of 14, 15-dehydro-12-oxo-phytodienoic acid and related cyclopentenones via the phytoprostane D(1) pathway. Phytochemistry 62:351–358

    Article  CAS  PubMed  Google Scholar 

  11. Thoma I, Krischke M, Loeffler C, Mueller MJ (2004) The isoprostanoid pathway in plants. Chem Phys Lipids 128:135–148

    Article  CAS  PubMed  Google Scholar 

  12. Thoma I, Loeffler C, Sinha AK, Gupta M, Krischke M, Steffan B, Roitsch T, Mueller MJ (2003) Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. Plant J 34:363–375

    Article  CAS  PubMed  Google Scholar 

  13. Morrow JD, Minton TA, Mukundan CR, Campbell MD, Zackert WE, Daniel VC, Badr KF, Blair IA, Roberts LJ 2nd (1994) Free radical-induced generation of isoprostanes in vivo. Evidence for the formation of D-ring and E-ring isoprostanes. J Biol Chem 269:4317–4326

    CAS  PubMed  Google Scholar 

  14. Chen Y, Morrow JD, Roberts LJ 2nd (1999) Formation of reactive cyclopentenone compounds in vivo as products of the isoprostane pathway. J Biol Chem 274:10863–10868

    Article  CAS  PubMed  Google Scholar 

  15. Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20:768–785

    Article  CAS  PubMed  Google Scholar 

  16. Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    Article  CAS  PubMed  Google Scholar 

  17. Traidl-Hoffmann C, Mariani V, Hochrein H, Karg K, Wagner H, Ring J, Mueller MJ, Jakob T, Behrendt H (2005) Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J Exp Med 201:627–636

    Article  CAS  PubMed  Google Scholar 

  18. Karg K, Dirsch VM, Vollmar AM, Cracowski JL, Laporte F, Mueller MJ (2007) Biologically active oxidized lipids (phytoprostanes) in the plant diet and parenteral lipid nutrition. Free Radic Res 41:25–37

    Article  CAS  PubMed  Google Scholar 

  19. Barden A, Croft K, Durand T, Guy A, Mueller M-J, Mori TJ (2009) F1-phytoprostanes following ALA supplementation in men: a randomised controlled trial. J Nutr 10:1890–1895

    Google Scholar 

  20. Grun C, Berger S, Matthes D, Mueller MJ (2007) Early accumulation of non-enzymatically synthesised oxylipins in Arabidopsis thaliana after infection with Pseudomonas syringae. Funct Plant Biology 34:65–71

    Article  CAS  Google Scholar 

  21. Loeffler C, Berger S, Guy A, Durand T, Bringmann G, Dreyer M, von Rad U, Durner J, Mueller MJ (2005) B1-phytoprostanes trigger plant defense and detoxification responses. Plant Physiol 137:328–340

    Article  CAS  PubMed  Google Scholar 

  22. Martinez-Lara E, Leaver M, George S (2002) Evidence from heterologous expression of glutathione S-transferases A and A1 of the plaice (Pleuronectes platessa) that their endogenous role is in detoxification of lipid peroxidation products. Mar Environ Res 54:263–266

    Article  CAS  PubMed  Google Scholar 

  23. Dueckershoff K, Mueller S, Mueller MJ, Reinders J (2008) Impact of cyclopentenone-oxylipins on the proteome of Arabidopsis thaliana. Biochim Biophys Acta 1784:1975–1985

    CAS  PubMed  Google Scholar 

  24. Mueller MJ (2004) Archetype signals in plants: the phytoprostanes. Curr Opin Plant Biol 7:441–448

    Article  CAS  PubMed  Google Scholar 

  25. Mueller M-J, Berger S (2009) Reactive electrophilic oxylipins : Pattern recognition and signaling. Phytochemistry. http://dx.doi.org/10.1016/j.phytochem.2009.05.018

  26. Iqbal M, Evans P, Lledo A, Verdaguer X, Pericas MA, Riera A, Loeffler C, Sinha AK, Mueller MJ (2005) Total synthesis and biological activity of 13, 14-dehydro-12-oxo-phytodienoic acids (deoxy-J1-phytoprostanes). Chem Bio Chem 6:276–280

    CAS  PubMed  Google Scholar 

  27. Mariani V, Gilles S, Jakob T, Thiel M, Mueller MJ, Ring J, Behrendt H, Traidl-Hoffmann C (2007) Immunomodulatory mediators from pollen enhance the migratory capacity of dendritic cells and license them for Th2 attraction. J Immunol 178:7623–7631

    CAS  PubMed  Google Scholar 

  28. Gutermuth J, Bewersdorff M, Traidl-Hoffmann C, Ring J, Mueller MJ, Behrendt H, Jakob T (2007) Immunomodulatory effects of aqueous birch pollen extracts and phytoprostanes on primary immune responses in vivo. J Allergy Clin Immunol 120:293–299

    Article  CAS  PubMed  Google Scholar 

  29. Roberts LJ II, Durand T (2004) Preface. Chem Phys Lipids 128:1–194

    Article  CAS  Google Scholar 

  30. Jahn U, Galano JM, Durand T (2008) Beyond prostaglandins—chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew Chem Int Ed Engl 47:5894–5955

    Article  CAS  PubMed  Google Scholar 

  31. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ 2nd (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 87:9383–9387

    Article  CAS  PubMed  Google Scholar 

  32. Nourooz-Zadeh J, Liu EH, Anggard E, Halliwell B (1998) F4-isoprostanes: a novel class of prostanoids formed during peroxidation of docosahexaenoic acid (DHA). Biochem Biophys Res Commun 242:338–344

    Article  CAS  PubMed  Google Scholar 

  33. Roberts LJ II, Montine TJ, Markesbery WR, Tapper AR, Hardy P, Chemtob S, Dettbarn WD, Morrow JD (1998) Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem 273:13605–13612

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt A, Boland W (2007) General strategy for the synthesis of b(1) phytoprostanes, dinor isoprostanes, and analogs. J Org Chem 72:1699–1706

    Article  CAS  PubMed  Google Scholar 

  35. Beckwith AJJ, Schiesser CH (1985) Regio- and stereoselectivity of alkenyl radical ring closure: a theoretical study. Tetrahedron 41:3925–3941

    Article  CAS  Google Scholar 

  36. Rondot B, Durand T, Girard JP, Rossi JC, Schio L, Khanapure SP, Rokach J (1993) A free radical route to syn lactones and other prostanoid intermediates in isoprostaglandin synthesis. Tetrahedron Lett 34:8245–8248

    Article  CAS  Google Scholar 

  37. Rondot B, Durand T, Rossi J-C, Rollin P (1994) Synthesis of 3,5-dideoxy-5-iodo-1,2-O-isopropylidene-beta-l-lyxo-hexofuranose derivatives. Carbohydr Res 261:149–156

    Article  CAS  Google Scholar 

  38. Krause N, Ebert S, Haubrich A (1997) Diastereoselective protonation of chiral enolates with chelating proton donors under reagent control: scope, mechanism, and applications. Liebigs Ann:2409–2418

  39. Roland A, Durand T, Rondot B, Vidal J-P, Rossi J-C (1996) A practical asymmetric synthesis of ent-12-epi-PGF-2 alpha methyl ester. Bull Soc Chim Fr 133:1149–1154

    CAS  Google Scholar 

  40. Noyori R, Tomino I, Yamada M, Nishizawa M (1984) Asymmetric synthesis via axially dissymmetric molecules. 7. Synthetic applications of the enantioselective reduction by binaphthol-modified lithium aluminum hydride reagents. J Am Chem Soc 106:6717–6725

    Article  CAS  Google Scholar 

  41. El Fangour S, Guy A, Despres V, Vidal J-P, Rossi J-C, Durand T (2004) Total synthesis of the eight diastereomers of the syn–anti–syn phytoprostanes F1 types I and II. J Org Chem 69:2498–2503

    Article  CAS  PubMed  Google Scholar 

  42. Iqbal M, Evans P (2003) Conjugate addition-Peterson olefination reactions: expedient routes to cross conjugated dienones. Tetrahedron Lett 44:5741–5745

    Article  CAS  Google Scholar 

  43. Iqbal M, Li Y, Evans P (2004) Synthesis of D12, 14–15-deoxy-PG-J1 methyl ester and epi-D12–15-deoxy-PG-J1. Tetrahedron 60:2531–2538

    Article  CAS  Google Scholar 

  44. Vasquez-Romero A, Cardenas L, Blasi E, Verdaguer X, Riera A (2009) Synthesis of prostaglandin and phytoprostanes B1 via regioselective intramolecular Pauson–Khand reactions. Org Lett 11:3104–3107

    Article  Google Scholar 

  45. Mikolajczyk M, Midura WH, Mohamed Ewas AM, Perlikowska W, Mikina M, Jankowiak A (2008) Horner olefination reaction in organic sulfur chemistry and synthesis of natural and bioactive products. Phosphorus Sulfur Silicon Relat Elem 183:313–325

    Article  CAS  Google Scholar 

  46. Perlikowska W, Mikolajczyk M (2009) A short synthesis of enantiomeric phytoprostanes B1 Type I. Synthesis 16:2715–2718

    Google Scholar 

  47. Sih CJ, Price P, Sood R, Salomon RG, Peruzzotti G, Casey M (1972) Total synthesis of prostaglandins. II. Prostaglandin E1. J Am Chem Soc 94:3643–3644

    Article  CAS  PubMed  Google Scholar 

  48. Alvarez FS, Wren D, Prince A (1972) Prostaglandins. IX. Synthesis of (+−)-prostaglandin E1, (+−)-11-deoxyprostaglandins E1, F1.alpha., and F1.beta., and (+−)-9-oxo-13-cis-prostenoic acid by conjugate addition of vinylcopper reagents. J Am Chem Soc 94:7823–7827

    Article  CAS  PubMed  Google Scholar 

  49. Kluge AF, Untch KG, Fried JH (1972) Prostaglandins. X. Synthesis of prostaglandin models and prostaglandins by conjugate addition of a functionalized organocopper reagent. J Am Chem Soc 94:7827–7832

    Article  CAS  PubMed  Google Scholar 

  50. Rodriguez AR, Spur BW (2003) First total synthesis of the E type I phytoprostanes. Tetrahedron Lett 44:7411–7415

    Article  CAS  Google Scholar 

  51. Rodriguez AR, Spur BW (2002) Total synthesis of E1 and E2 isoprostanes by diastereoselective protonation. Tetrahedron Lett 43:9249–9253

    Article  CAS  Google Scholar 

  52. Rodriguez AR, Spur BW (2002) Total synthesis of isoprostanes via the two-component coupling process. Tetrahedron Lett 43:4575–4579

    Article  CAS  Google Scholar 

  53. Loza E, Lola D, Freimanis J, Turovskii I, Gavars M, Liepina A (1985) 2,5-Disubstituted furans in the synthesis of 2-cyclopentenone derivatives. Latvijas PSR Zinatnu Akademijas Vestis, Kimijas Serija 4:465–472

    Google Scholar 

  54. El Fangour S, Guy A, Vidal J-P, Rossi J-C, Durand T (2005) A flexible synthesis of the phytoprostanes B1 type I and II. J Org Chem 70:989–997

    Article  CAS  PubMed  Google Scholar 

  55. Pinot E, Guy A, Guyon A-L, Rossi J-C, Durand T (2005) Enzymatic kinetic resolution of a functionalized 4-hydroxy-cyclopentenone: synthesis of the key intermediates in the total synthesis of isoprostanes. Tetrahedron Asymmetry 16:1893–1895

    Article  CAS  Google Scholar 

  56. Pinot E, Guy A, Fournial A, Balas L, Rossi J-C, Durand T (2008) Total synthesis of the four enantiomerically pure diasteroisomers of the phytoprostanes E1Type II and of the 15–E2t-Isoprostanes. J Org Chem 73:3063–3069

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We are deeply grateful to Pr. Jean-Yves Lallemand and the ICSN for their generous financial support and a part of this work was supported by the University Montpellier I grant (BQR-2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Durand.

About this article

Cite this article

Durand, T., Bultel-Poncé, V., Guy, A. et al. New Bioactive Oxylipins Formed by Non-Enzymatic Free-Radical-Catalyzed Pathways: the Phytoprostanes. Lipids 44, 875–888 (2009). https://doi.org/10.1007/s11745-009-3351-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3351-1

Keywords

Navigation