Skip to main content
  • 945 Accesses

Zusammenfassung

Verletzungen der Haut, im speziellen der retikulären Dermis, führen zu einem reparativen Prozess, der in einer sichtbaren Narbe endete. Die Narbe stellt das Resultat der Wundheilung mit makroskopischen, mikroskopischen und biochemischen Veränderung der normalen Struktur und Funktion der Hautarchitektur dar. Die Narbe lässt sich durch Parameter wie Höhe, Elastizität, Textur, Vaskularität und Pigmentierung beschreiben. Die therapeutische Beeinflussung der Narbe kann durch konservative und/oder invasive Maßnahmen erfolgen. Zu den operativen Maßnahmen gehört die subläsionale Injektion von autologem Fettgewebe als Suspension. Die Suspension wird dabei in kleinen Depots perlschnurartig, fächerförmig subläsional appliziert. Diese Prozedur kann mit einer subdermalen Narbenlösung (Adhäsiolyse, Subzision, Rigottotomie) kombiniert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Aoki S, Toda S, Ando T et al. (2004) Bone marrow stromal cells, preadipocytes and dermal fibroblasts promote epidermal regeneration in their distinct fashions. Mol Biol Cell 15: 4647–4657

    Google Scholar 

  • Asselineau D, Pageon H, Mine S. (2008) Fibroblast subpopulations: a developmental approach of skin physiology and ageing. J Soc Biol 202: 7–14

    Google Scholar 

  • Bruesselaers N, Pirayesh A, Hoeksema H et al. (2010) Burn scar assessment : A systematic review of objective scar assessment tools. Burns 36: 1157–1164

    Google Scholar 

  • Campbell CA, Cairms BA, Meyer AA et al. (2010) Adipocytes constitutively release factors that accelerates keratinocyte proliferation in vitro. Ann Plastic Surg 64: 327–332

    Google Scholar 

  • Campbell SS, Rees JL (2001) Why are scars pale? An immunohistochemical study indicating preservation of melanocyte number and function in surgical scars. Acta Derm Venereol 81: 326–328

    Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98: 1076–84

    Google Scholar 

  • Chadwick S, Heath R, Shah M (2012) Abnormal pigmentation within cutaneous scars: a complication of wound healing. India J Plast Surg 45: 403–411

    Google Scholar 

  • Covarrubias P, Cardenas –Camarena L, Guerrerosantos J et al. (2013) Evaluation of histological changes in the fat-grafted fascial skin: clinical trail. Aesth Plast Surg 37: 778–783

    Google Scholar 

  • De Benito J, Fernandez I, Nanda V (1999) treatment of depressed scars with a dissecting cannula and an autologous fat graft. Aesth Plast Surg 23: 367–370

    Google Scholar 

  • De Luca M, Bondanza S, Di Marco E et al. (1994) Keratinocyte – melanocyte interactions in in vitro reconstituted normal human epidermis. In: Leigh IM, Lane EB, Watt FM (eds) The keratinocyte handbook. Cambridge University Press, pp 95–108

    Google Scholar 

  • Dressler J, Busuttil A, Koch R et al. (2001) Sequence of melanocyte migration into human scar tissue. Int J Legal Med 115: 61–63

    Google Scholar 

  • Driskell RR, Lichtenberger BM, Hoste E et al. (2013) Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504: 277–281

    Google Scholar 

  • Ezure T, Amano S (2007) Adiponectin and leptin up-regulate extracellular matrix production by dermal fibroblasts. Biofactors 31: 229–36

    Google Scholar 

  • Ezure T, Amano S (2011) Negative regulation of dermal fibroblasts by enlarges adipocytes through release of free fatty acids. J Invest Dermatol 131: 2004–9

    Google Scholar 

  • Fang F, Liu L, Tamaki Z, Wei J, Maragoni RG, Bhattacharyya S, Summer RS, Ye B Varga J (2012) The adipokin adiponektin has potent anti-fibric effects medaited via adenosin monophosphate-activated protein kinase: novel target for fibrosis therapy. Arthritis Research Therapy 14: R229

    Google Scholar 

  • Haley S, Shah D, Romero F, Summer R (2013) Scleroderma related lung disease: Os there a pathogenic role for adipokines? Curr Rheumatol Rep 15: doi10.1007/s11926–013–0381–8

    Google Scholar 

  • Haque WA, Garg A (2004) Adipocyte biology and adipocytokines. Clin Lab Med 24: 217–34

    Google Scholar 

  • Honardoust D, Ding J, Varkey M et al. (2012) Deep dermal fibroblasts refractory to migration and Decorin-induced apoptosis contribute to hypertrophic scarring. J Burn Care Res epub ahead of print

    Google Scholar 

  • Klinger M, Marazzani M, Vigo D, Torre M (2008) Fat injection for cases of severe burn outcomes: a new perspective of scar remodeling and reduction. Aesth Plast Surg 32: 465–469

    Google Scholar 

  • Li ZY, Su HT, Lu SL et al. (2004) Clinical study on the relationship among the dermis, fat dome and postburn hyperplastic scar formation. Zhonghua Shao Shang Za Zhi 20: 242–6

    Google Scholar 

  • Marangoni RG, Korman B, Wei J et al. (2014) Myofibroblasts in cutaneous fibrosis originate from adiponectin–positive intradermal progenitors. Arthritis Rheumatol doi 10.1002/art 38990 epub ahead of print

    Google Scholar 

  • Matsumura H, Engrav LH et al. (2001) Cones of skin occur where hypertrophic scar occurs. Wound Repair Regen 9: 269–77

    Google Scholar 

  • Mynatt RL, Stephens JM (2001) Agouti regulates adipocyte transcription factors. Am J Physiol Cell Physiol 280: C954-C961

    Google Scholar 

  • Mynatt RL, Stephens JM (2001) Agouti regulates adipocyte transcription factors. Am J Physiol Cell Physiol 280: C954-C961

    Google Scholar 

  • Nakasone H, Terasakosaito K, Yamazaki R, Sato M et al. (2014) Impact of high-/middle-molecular-weight adiponectin on the synthesis and regulation of extracellular matrix in dermal fibroblasts. Exp Hematology 42: 261–73

    Google Scholar 

  • Orentreich DS, Orentreich N (1995) Subcutaneous incisionless (subcision) surgery for the correction of depressed scars and wrinkles. Dermatol Surg 21: 543–9

    Google Scholar 

  • Pallua N, Baroncici A, Alharbi Z, Stromps JP (2014) Improvement of fascial scar appaearance and microcirulation by autologous lipofiling. J Plast Reconstr Aesth Surg 67: 1033–1037

    Google Scholar 

  • Sardesai MG, Moore CC (2007) Quantitative and qualitative dermal change with microfat grafting of facial scars. Otolaryngology Head Neck Surg 137: 868–872

    Google Scholar 

  • Sorrell JM, Baber MA, Caplan al. (2004) Site-matched papillary and reticular human dermal fibroblasts differ in their release of specific growth factors/cytokines and their interaction with keratinocytes. J Cell Physiol 200: 134–145

    Google Scholar 

  • Sugihara H, Toda S, Yonemitsu N et al. (2001) Effects of fat cells on keratinocytes and fibroblasts in a reconstructed rat skin model using collagen gel matrix culture. Br J Dermatol 144: 244–253

    Google Scholar 

  • Toyserkani NM, Christensen ML, Sheikh SP, Sorensen JA (2014) Adipose-derived stem cells. Ann Plast Surg 2014 [Epub ahead of print]

    Google Scholar 

  • van den Bogaerdt AJ, van der Veen VC, van Zuijlen PP, Reijnen L et al. (2009) Collagen cross-linking by adipose –derived mesenchymal stromal cells and scar–derived mesenchymal cells: Are mesenchymal stromal cells involved in scar formation? Wound Repair Regen 17: 548–58

    Google Scholar 

  • van der Wal MB, Tuinebreijer WE, Lundgren-Nilsson A, Middelkoop E, van Zuijlen PP (2014) Differential item functioning in the Observer scale of the POSAS for different scar types. Qual Life R 23: 2037–45

    Google Scholar 

  • Verhaegen PDHM, Van der Wal MBA, Middlekoop E et al. (2011) Objective scar assessment tolls: A clinical appraisal. Plast Reconstr Surg 127: 1561–1570

    Google Scholar 

  • Yamaguchi Y, Hearing VJ (2009) Physiological factors that regulate skin pigmentation. Biofactors 35: 193–199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rennekampff, HO., Pallua, N. (2016). Narben. In: Ueberreiter, K. (eds) Autologe Fettgewebstransplantation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49489-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49489-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49488-2

  • Online ISBN: 978-3-662-49489-9

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics