Skip to main content

Reflectance Confocal Microscopy and Aging

  • Reference work entry
  • First Online:
Textbook of Aging Skin
  • 209 Accesses

Abstract

Limitations in conventional clinical and histopathological assessment of chronological aging and photoaging have seen interest grow in noninvasive microscopy techniques. At the forefront is the use of reflectance confocal microscopy (RCM). Typically referred to as RCM, it results in quasi-histological resolution of the cellular and subcellular structures within the stratum corneum down to the epidermal-dermal junction and upper papillary dermis. RCM can be used for en face serial imaging of the same site over time resulting in unique features that provide a mechanistic understanding of the aging process. This chapter discusses these features in relation to conventional approaches and how computational analysis can be used for automated objective assessment of skin aging. Lastly, advancements in RCM and alternative microscopy techniques are introduced, providing insight into the pathways for clinical integration of noninvasive microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kappes UP, Elsner P. Clinical and photographic scoring of skin aging. Skin Pharmacol Appl Skin Physiol. 2003;16:100–7.

    Article  CAS  PubMed  Google Scholar 

  2. McKenzie NE, et al. Development of a photographic scale for consistency and guidance in dermatologic assessment of forearm sun damage. Arch Dermatol. 2011;147:31–6. doi:10.1001/archdermatol.2010.392.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weiss JS, et al. Tretinoin therapy: practical aspects of evaluation and treatment. J Int Med Res. 1990;18 Suppl 3:41C–8.

    PubMed  Google Scholar 

  4. Raphael AP, et al. Computational characterization of reflectance confocal microscopy features reveals potential for automated photoageing assessment. Exp Dermatol. 2013;22:458–63. doi:10.1111/exd.12176.

    Article  CAS  PubMed  Google Scholar 

  5. Vierkotter A, et al. The scinexa: a novel, validated score to simultaneously assess and differentiate between intrinsic and extrinsic skin ageing. J Dermatol Sci. 2009;53:207–11. doi:10.1016/j.jdermsci.2008.10.001.

    Article  PubMed  Google Scholar 

  6. Isik B, et al. Development of skin aging scale by using dermoscopy. Skin Res Technol. 2013;19:69–74. doi:10.1111/srt.12033.

    Article  PubMed  Google Scholar 

  7. Argenziano G, et al. Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet. J Am Acad Dermatol. 2003;48:679–93. doi:10.1067/mjd.2003.281.

    Article  PubMed  Google Scholar 

  8. Wurm EM, et al. Confocal features of equivocal facial lesions on severely sun-damaged skin: four case studies with dermatoscopic, confocal, and histopathologic correlation. J Am Acad Dermatol. 2012;66:463–73. doi:10.1016/j.jaad.2011.02.040.

    Article  PubMed  Google Scholar 

  9. Minsky M. Microscopy apparatus. International Patent USA 1957.

    Google Scholar 

  10. Egger MD, Petran M. New reflected-light microscope for viewing unstained brain and ganglion cells. Science. 1967;157(305):305–7.

    Article  CAS  PubMed  Google Scholar 

  11. Cavanagh HD, et al. Confocal microscopy of the living eye. Contact Lens Assoc Ophthalmol. 1990;16(65):65–73.

    CAS  Google Scholar 

  12. Jester JV, et al. In vivo, real-time confocal imaging. J Electron Microsc Tech. 1991;18:50–60.

    Article  CAS  PubMed  Google Scholar 

  13. Andrews PM, et al. Tandem scanning confocal microscopy (tscm) of normal and ischemic living kidneys. Am J Anat. 1991;191:95–102.

    Article  CAS  PubMed  Google Scholar 

  14. Masters BR, Thaer AA. In vivo human corneal confocal microscopy of identical fields of subepithelial nerve plexus, basal epithelial, and wing cells at different times. Microsc Res Tech. 1994;29:350–6.

    Article  CAS  PubMed  Google Scholar 

  15. Rajadhyaksha M, et al. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol. 1995;104:946–52.

    Article  CAS  PubMed  Google Scholar 

  16. Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol. 1981;77:13–9.

    Article  CAS  PubMed  Google Scholar 

  17. Sanchez-Mateos JLS, et al. Reflectance-mode confocal microscopy in dermatological oncology. In: Nouri K, editor. Lasers in dermatology and medicine/lasers in dermatology and medicine. New York: Springer London Limited; 2011. p. 285–308.

    Google Scholar 

  18. Kawasaki K, et al. Age-related morphometric changes of inner structures of the skin assessed by in vivo reflectance confocal microscopy. Int J Dermatol. 2015;54:295–301. doi:10.1111/ijd.12220.

    Article  PubMed  Google Scholar 

  19. Aghassi D, et al. Confocal laser microscopic imaging of actinic keratoses in vivo: a preliminary report. J Am Acad Dermatol. 2000;43:42–8. doi:10.1067/mjd.2000.105565.

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez S, et al. Characterization of psoriasis in vivo by reflectance confocal microscopy. J Med. 1999;30:337–56.

    CAS  PubMed  Google Scholar 

  21. Gonzalez S, et al. Allergic contact dermatitis: correlation of in vivo confocal imaging to routine histology. J Am Acad Dermatol. 1999;40:708–13.

    Article  CAS  PubMed  Google Scholar 

  22. Gonzalez S, et al. Confocal reflectance imaging of folliculitis in vivo: correlation with routine histology. J Cutan Pathol. 1999;26:201–5.

    Article  CAS  PubMed  Google Scholar 

  23. Middelkamp-Hup MA, et al. Detection of uv-induced pigmentary and epidermal changes over time using in vivo reflectance confocal microscopy. J Invest Dermatol. 2006;126:402–7. doi:10.1038/sj.jid.5700055.

    Article  CAS  PubMed  Google Scholar 

  24. Wurm EM, et al. In vivo assessment of chronological ageing and photoageing in forearm skin using reflectance confocal microscopy. Br J Dermatol. 2012;167:270–9. doi:10.1111/j.1365-2133.2012.10943.x.

    Article  CAS  PubMed  Google Scholar 

  25. Haytoglu NS, et al. Assessment of skin photoaging with reflectance confocal microscopy. Skin Res Technol. 2014;20:363–72. doi:10.1111/srt.12127.

    Article  PubMed  Google Scholar 

  26. Longo C, et al. Skin aging: in vivo microscopic assessment of epidermal and dermal changes by means of confocal microscopy. J Am Acad Dermatol. 2013;68:e73–82. doi:10.1016/j.jaad.2011.08.021.

    Article  PubMed  Google Scholar 

  27. Prow TW, et al. Reflectance confocal microscopy: hallmarks of keratinocyte cancer and its precursors. Curr Probl Dermatol. 2015;46:85–94. doi:10.1159/000366541.

    Article  PubMed  Google Scholar 

  28. Kurugol S, et al. Automated delineation of dermal-epidermal junction in reflectance confocal microscopy image stacks of human skin. J Invest Dermatol. 2015;135:710–7. doi:10.1038/jid.2014.379.

    Article  CAS  PubMed  Google Scholar 

  29. Kurugol S, et al. Validation study of automated dermal/epidermal junction localization algorithm in reflectance confocal microscopy images of skin. Proc SPIE Int Soc Opt Eng. 2012;8207. doi:10.1117/12.909227.

    Google Scholar 

  30. Kurugol S, et al. Pilot study of semiautomated localization of the dermal/epidermal junction in reflectance confocal microscopy images of skin. J Biomed Opt. 2011;16:036005. doi:10.1117/1.3549740.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gareau D. Automated identification of epidermal keratinocytes in reflectance confocal microscopy. J Biomed Opt. 2011;16:030502. doi:10.1117/1.3552639.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gareau DS, et al. Confocal mosaicing microscopy in skin excisions: feasibility of cancer margin screening at the bedside to guide mohs. J Biomed Opt. 2008;13:054001. doi:10.1117/1.2981828.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Calzavara-Pinto P, et al. Reflectance confocal microscopy for in vivo skin imaging. Photochem Photobiol. 2008;84:1421–30.

    Article  Google Scholar 

  34. Tannous Z, et al. In vivo real-time confocal reflectance microscopy: a noninvasive guide for mohs micrographic surgery facilitated by aluminum chloride, an excellent contrast enhancer. Dermatol Surg. 2003;29:839–46.

    PubMed  Google Scholar 

  35. Rajadhyaksha M, et al. Detectability of contrast agents for confocal reflectance imaging of skin and microcirculation. J Biomed Opt. 2004;9:323–31.

    Article  CAS  PubMed  Google Scholar 

  36. Scope A, et al. In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intra-operative mapping of cancer margins. Br J Dermatol. 2010;163:1218–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gareau DS. Feasibility of digitally stained multimodal confocal mosaics to simulate histopathology. J Biomed Opt. 2009;14:034050. doi:10.1117/1.3149853.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Horton NG, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics. 2013;7(205):205–9.

    Article  CAS  PubMed Central  Google Scholar 

  39. Wang H, et al. Perfectly registered multiphoton and reflectance confocal video rate imaging of in vivo human skin. J Biophotonics. 2013;6:305–9.

    Article  PubMed  Google Scholar 

  40. Koehler MJ, et al. Keratinocyte morphology of human skin evaluated by in vivo multiphoton laser tomography. Skin Res Technol. 2011;17:479–86.

    Article  CAS  PubMed  Google Scholar 

  41. Lin S-J, et al. Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy. Opt Lett. 2005;30:2275–7.

    Article  PubMed  Google Scholar 

  42. Koehler MJ, et al. In vivo assessment of human skin aging by multiphoton laser scanning tomography. Opt Lett. 2006;31:2879–81.

    Article  PubMed  Google Scholar 

  43. Boyd RW. Nonlinear optics. 3rd ed. Amsterdam: Academic; 2008.

    Google Scholar 

  44. Chu SW, et al. Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy. Biophys J. 2004;86:3914–22. doi:10.1529/biophysj.103.034595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Greenhalgh C, et al. Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes. Appl Opt. 2007;46:1852–9.

    Article  PubMed  Google Scholar 

  46. Dombeck DA, et al. Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy. Proc Natl Acad Sci U S A. 2003;100:7081–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Freund I, Deutsch M. Second-harmonic microscopy of biological tissue. Opt Lett. 1986;11:94–6.

    Article  CAS  PubMed  Google Scholar 

  48. Stoller P, et al. Polarization-modulated second harmonic generation in collagen. Biophys J. 2002;82:3330–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yasui T, et al. Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy. Opt Express. 2009;17:912–23.

    Article  CAS  PubMed  Google Scholar 

  50. Tuer AE, et al. Hierarchical model of fibrillar collagen organization for interpreting the second-order susceptibility tensors in biological tissue. Biophys. 2012;103:2093–105. doi:10.1016/j.bpj.2012.10.019.

    CAS  Google Scholar 

  51. Samim M, et al. Double stokes mueller polarimetry of second-harmonic generation in ordered molecular structures. J Opt Soc Am B. 2015;32:451–61.

    Article  CAS  Google Scholar 

  52. Muller M, et al. 3d microscopy of transparent objects using third-harmonic generation. J Microsc (Oxf). 1998;191:266–74.

    Article  Google Scholar 

  53. Squier JA, et al. Third harmonic generation microscopy. Opt Express. 1998;3:315–24.

    Article  CAS  PubMed  Google Scholar 

  54. Debarre D, et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods. 2006;3:47–53. doi:10.1038/Nmeth813.

    Article  CAS  PubMed  Google Scholar 

  55. Millard AC, et al. Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source. Appl Opt. 1999;38:7393–7.

    Article  CAS  PubMed  Google Scholar 

  56. Tsai C-K, et al. Imaging granularity of leukocytes with third harmonic generation microscopy. Biomed Opt Express. 2012;3:2234–43.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tsai C-K, et al. Virtual optical biopsy of human adipocytes with third harmonic generation microscopy. Biomed Opt Express. 2013;4:178–86.

    Article  PubMed  Google Scholar 

  58. Tai S-P, et al. Optical biopsy of fixed human skin with backward-collected optical harmonics signals. Opt Express. 2005;13:8231–42.

    Article  PubMed  Google Scholar 

  59. Liao Y-H, et al. Determination of chronological aging parameters in epidermal keratinocytes by in vivo harmonic generation microscopy. Biomed Opt Express. 2013;4:77–88.

    Article  PubMed  Google Scholar 

  60. Chen S-Y, et al. In vivo harmonic generation biopsy of human skin. J Biomed Opt Let. 2009;14:0605051–3.

    Google Scholar 

  61. Tokarz D, et al. Molecular organization of crystalline beta-carotene in carrots determined with polarization-dependent second and third harmonic generation microscopy. J Phys Chem B. 2014;118:3814–22.

    Article  CAS  PubMed  Google Scholar 

  62. Babalola O, et al. Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis. Arch Dermatol Res. 2014;306:1–9.

    Article  CAS  PubMed  Google Scholar 

  63. Pagnoni A, et al. Optical coherence tomography in dermatology. Skin Res Technol. 1999;5:83–7.

    Article  Google Scholar 

  64. Boone MA, et al. High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study. Arch Dermatol Res. 2015;307:705–20. doi:10.1007/s00403-015-1575-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Malvehy J. A new vision of actinic keratosis beyond visible clinical lesions. J Eur Acad Dermatol Venereol. 2015;29:3–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony P. Raphael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Raphael, A.P., Tokarz, D., Ardigò, M., Prow, T.W. (2017). Reflectance Confocal Microscopy and Aging. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_161

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47398-6_161

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47397-9

  • Online ISBN: 978-3-662-47398-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics