Skip to main content

Advertisement

Log in

Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis

  • Review Article
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT) is a non-invasive imaging modality that is transforming clinical diagnosis in dermatology and other medical fields. OCT provides a cross-sectional evaluation of the epidermis and dermis and allows in vivo imaging of skin collagen. Upregulated collagen content is a key feature of fibrotic skin diseases. These diseases are often managed by the practitioner’s subjective assessment of disease severity and response to therapies. The purpose of this review is to provide an overview of the principles of OCT and present available evidence on the ability of OCT to image skin collagen in vivo for the diagnosis and management of diseases characterized by skin fibrosis. We review OCT studies that characterize the collagen content in normal skin and fibrotic skin diseases including systemic sclerosis and hypertrophic scars secondary to burn, trauma, and other injury. We also highlight several limitations of OCT and suggest enhancements to improve OCT imaging of skin fibrosis. We conclude that OCT imaging has the potential to serve as an objective, non-invasive measure of collagen’s status and disease progression for use in both research trials and clinical practice. The future use of OCT imaging as a quantitative imaging biomarker of fibrosis will help identify fibrosis and facilitate clinical examination in monitoring response to treatment longitudinally without relying on serial biopsies. The use of OCT technology for quantification of fibrosis is in the formative stages and we foresee tremendous growth potential, similar to the ultrasound development paradigm that evolved over the past 30 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CT:

Computed tomography

FD:

Frequency domain

MRI:

Magnetic resonance imaging

mRSS:

Modified Rodnan skin score

OCT:

Optical coherence tomography

PS-OCT:

Polarization-sensitive optical coherence tomography

SS-OCT:

Swept-source optical coherence tomography

TD:

Time domain

US:

Ultrasound

References

  1. Abignano G, Aydin SZ, Castillo-Gallego C, Liakouli V, Woods D, Meekings A, Wakefield RJ, McGonagle DG, Emery P, Del Galdo F (2013) Virtual skin biopsy by optical coherence tomography: the first quantitative imaging biomarker for scleroderma. Ann Rheum Dis. doi:10.1136/annrheumdis-2012-202682

    Google Scholar 

  2. Boone M, Norrenberg S, Jemec G, Del Marmol V (2013) High-definition optical coherence tomography: adapted algorithmic method for pattern analysis of inflammatory skin diseases: a pilot study. Arch Dermatol Res 305(4):283–297. doi:10.1007/s00403-012-1311-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Boone MA, Norrenberg S, Jemec GB, Del Marmol V (2013) High-definition optical coherence tomography imaging of melanocytic lesions: a pilot study. Arch Dermatol Res. doi:10.1007/s00403-013-1387-9

    PubMed Central  Google Scholar 

  4. Cahill RA, Mortensen NJ (2010) Intraoperative augmented reality for laparoscopic colorectal surgery by intraoperative near-infrared fluorescence imaging and optical coherence tomography. Minerva Chir 65(4):451–462

    CAS  PubMed  Google Scholar 

  5. Chu CR, Izzo NJ, Irrgang JJ, Ferretti M, Studer RK (2007) Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography. J Biomed Optics 12(5):051703. doi:10.1117/1.2789674

    Article  Google Scholar 

  6. Crisan M, Crisan D, Sannino G, Lupsor M, Badea R, Amzica F (2013) Ultrasonographic staging of cutaneous malignant tumors: an ultrasonographic depth index. Arch Dermatol Res 305(4):305–313. doi:10.1007/s00403-013-1321-1

    Article  CAS  PubMed  Google Scholar 

  7. Dalimier E, Salomon D (2012) Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging. Dermatology 224(1):84–92. doi:10.1159/000337423

    Article  PubMed  Google Scholar 

  8. Fujimoto JG (2003) Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 21(11):1361–1367. doi:10.1038/nbt892

    Article  CAS  PubMed  Google Scholar 

  9. Gabrielli A, Avvedimento EV, Krieg T (2009) Scleroderma. N Engl J Med 360(19):1989–2003. doi:10.1056/NEJMra0806188

    Article  CAS  PubMed  Google Scholar 

  10. Gambichler T, Jaedicke V, Terras S (2011) Optical coherence tomography in dermatology: technical and clinical aspects. Arch Dermatol Res 303(7):457–473. doi:10.1007/s00403-011-1152-x

    Article  PubMed  Google Scholar 

  11. Gladkova ND, Petrova GA, Nikulin NK, Radenska-Lopovok SG, Snopova LB, Chumakov YP, Nasonova VA, Gelikonov VM, Gelikonov GV, Kuranov RV, Sergeev AM, Feldchtein FI (2000) In vivo optical coherence tomography imaging of human skin: norm and pathology. Skin Res Technol Off J Int Soc Bioeng Skin 6(1):6–16

    Article  Google Scholar 

  12. Han JH, Kang JU, Song CG (2011) Polarization sensitive subcutaneous and muscular imaging based on common path optical coherence tomography using near infrared source. J Med Syst 35(4):521–526. doi:10.1007/s10916-009-9388-0

    Article  PubMed  Google Scholar 

  13. Jimenez SA, Derk CT (2004) Following the molecular pathways toward an understanding of the pathogenesis of systemic sclerosis. Ann Intern Med 140(1):37–50

    Article  CAS  PubMed  Google Scholar 

  14. Krieg T, Aumailley M, Koch M, Chu M, Uitto J (2012) Collagens, elastic fibers, and other extracellular matrix proteins of the dermis. Fitzpatrick’s dermatology in general medicine, 8th edition. McGraw-Hill, New York

  15. Kunzi-Rapp K, Dierickx CC, Cambier B, Drosner M (2006) Minimally invasive skin rejuvenation with Erbium: YAG laser used in thermal mode. Lasers Surg Med 38(10):899–907. doi:10.1002/lsm.20380

    Article  PubMed  Google Scholar 

  16. Lamirel C, Newman N, Biousse V (2009) The use of optical coherence tomography in neurology. Rev Neurol Dis 6(4):E105–E120

    PubMed  Google Scholar 

  17. Liew YM, McLaughlin RA, Gong P, Wood FM, Sampson DD (2013) In vivo assessment of human burn scars through automated quantification of vascularity using optical coherence tomography. J Biomed Optics 18(6):061213. doi:10.1117/1.JBO.18.6.061213

    Article  Google Scholar 

  18. Liu B, Vercollone C, Brezinski ME (2012) Towards improved collagen assessment: polarization-sensitive optical coherence tomography with tailored reference arm polarization. Int J Biomed Imaging 2012:892680. doi:10.1155/2012/892680

    PubMed Central  PubMed  Google Scholar 

  19. Matcher SJ (2011) Practical aspects of OCT imaging in tissue engineering. Methods Mol Biol 695:261–280. doi:10.1007/978-1-60761-984-0_17

    Article  CAS  PubMed  Google Scholar 

  20. Mogensen M, Morsy HA, Thrane L, Jemec GB (2008) Morphology and epidermal thickness of normal skin imaged by optical coherence tomography. Dermatology 217(1):14–20. doi:10.1159/000118508

    Article  PubMed  Google Scholar 

  21. Mogensen M, Thrane L, Joergensen TM, Andersen PE, Jemec GB (2009) Optical coherence tomography for imaging of skin and skin diseases. Semin Cutan Med Surg 28(3):196–202. doi:10.1016/j.sder.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  22. Oliveira GV, Chinkes D, Mitchell C, Oliveras G, Hawkins HK, Herndon DN et al (2005) Objective assessment of burn scar vascularity, erythema, pliability, thickness, and planimetry. Dermatol Surg Off Publ Am Soc Dermatol Surg 31(1):48–58

    CAS  Google Scholar 

  23. Pan Y, Farkas DL (1998) Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions. J Biomed Optics 3(4):446–455. doi:10.1117/1.429897

    Article  CAS  Google Scholar 

  24. Phillips KG, Wang Y, Levitz D, Choudhury N, Swanzey E, Lagowski J, Kulesz-Martin M, Jacques SL (2011) Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin. J Biomed Optics 16(4):040503. doi:10.1117/1.3567082

    Article  Google Scholar 

  25. Pierce MC, Sheridan RL, Hyle Park B, Cense B, de Boer JF (2004) Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography. Burns J Int Soc Burn Inj 30(6):511–517. doi:10.1016/j.burns.2004.02.004

    Article  Google Scholar 

  26. Pierce MC, Strasswimmer J, Hyle Park B, Cense B, De Boer JF (2004) Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. J Biomed Optics 9(2):287–291. doi:10.1117/1.1645797

    Article  Google Scholar 

  27. Pierce MC, Strasswimmer J, Park BH, Cense B, de Boer JF (2004) Advances in optical coherence tomography imaging for dermatology. J Invest Dermatol 123(3):458–463. doi:10.1111/j.0022-202X.2004.23404.x

    Article  CAS  PubMed  Google Scholar 

  28. Pircher M, Goetzinger E, Leitgeb R, Hitzenberger C (2004) Three dimensional polarization sensitive OCT of human skin in vivo. Opt Express 12(14):3236–3244

    Article  PubMed  Google Scholar 

  29. Sakai S, Yamanari M, Lim Y, Nakagawa N, Yasuno Y (2011) In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography. Biomed Optics Express 2(9):2623–2631. doi:10.1364/BOE.2.002623

    Article  Google Scholar 

  30. Sattler E, Kastle R, Welzel J (2013) Optical coherence tomography in dermatology. J Biomed Optics 18(6):061224. doi:10.1117/1.JBO.18.6.061224

    Article  Google Scholar 

  31. Tadrous PJ (2000) Methods for imaging the structure and function of living tissues and cells: 3. Confocal microscopy and micro-radiology. J Pathol 191(4):345–354. doi:10.1002/1096-9896(200008)191:4<345:AID-PATH696>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  32. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, Fujimoto JG (1997) In vivo endoscopic optical biopsy with optical coherence tomography. Science 276(5321):2037–2039

    Article  CAS  PubMed  Google Scholar 

  33. Unterhuber A, Povazay B, Bizheva K, Hermann B, Sattmann H, Stingl A, Le T, Seefeld M, Menzel R, Preusser M, Budka H, Schubert C, Reitsamer H, Ahnelt PK, Morgan JE, Cowey A, Drexler W (2004) Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography. Phys Med Biol 49(7):1235–1246

    Article  CAS  PubMed  Google Scholar 

  34. Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Investig 117(3):557–567. doi:10.1172/JCI31139

    Article  CAS  PubMed  Google Scholar 

  35. Welzel J (2001) Optical coherence tomography in dermatology: a review. Skin Res Technol Off J Int Soc Bioeng Skin 7(1):1–9

    Article  CAS  Google Scholar 

  36. Welzel J, Lankenau E, Birngruber R, Engelhardt R (1997) Optical coherence tomography of the human skin. J Am Acad Dermatol 37(6):958–963

    Article  CAS  PubMed  Google Scholar 

  37. Wessels R, De Bruin DM, Faber DJ, Van Leeuwen TG, Van Beurden M, Ruers TJ (2013) Optical biopsy of epithelial cancers by optical coherence tomography (OCT). Lasers Med Sci. doi:10.1007/s10103-013-1291-8

    PubMed  Google Scholar 

  38. Yasuno Y, Makita S, Sutoh Y, Itoh M, Yatagai T (2002) Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. Opt Lett 27(20):1803–1805

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project described was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through grant number UL1 TR000002 and linked award TL1 TR000133. The project described was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through grant number UL1 TR000002 and linked award KL2 TR000134. Research reported in this publication was supported by the National Institute Of Allergy And Infectious Diseases of the National Institutes of Health under Award Number R33AI080604. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared Jagdeo.

Additional information

O. Babalola and A. Mamalis contributed equally to the preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babalola, O., Mamalis, A., Lev-Tov, H. et al. Optical coherence tomography (OCT) of collagen in normal skin and skin fibrosis. Arch Dermatol Res 306, 1–9 (2014). https://doi.org/10.1007/s00403-013-1417-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-013-1417-7

Keywords

Navigation