Skip to main content

Molecular and Cellular Interplay in SCC Including Immunomodulation and Clinical Implications

  • Chapter
  • First Online:
High-Risk Cutaneous Squamous Cell Carcinoma

Abstract

High-risk squamous cell carcinoma (SCC) is thought to occur mainly in severely immunosuppressed individuals, such as organ transplant recipients (OTRs). The risk of developing SCC in these patients is thought to be over 100-fold greater than that of the general population, with lesions demonstrating markedly more aggressive clinical behaviors. Often, high-risk SCC will present as multiple lesions with elevated rates of local recurrence and metastasis, rendering traditional surgical therapies ineffective. Comparing and contrasting SCC lesions in immune competent patients versus high-risk lesions in OTRs affords us a unique perspective on the molecular pathways and immune players which may be involved in SCC development and the generation of effective anti-tumor immunity. This chapter will serve to highlight those critical components which, taken together, may be contributing to a decrease in immune surveillance and an increase in mutagenic and proliferative signals, thus giving rise to high-risk SCC lesions and surrounding field cancerization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leblanc Jr KG, Hughes MP, Sheehan DJ. The role of sirolimus in the prevention of cutaneous squamous cell carcinoma in organ transplant recipients. Dermatol Surg. 2011;37(6):744–9.

    CAS  PubMed  Google Scholar 

  2. Ulrich C, et al. Skin cancer in organ transplant recipients--where do we stand today? Am J Transplant. 2008;8(11):2192–8.

    Article  CAS  PubMed  Google Scholar 

  3. Lindelof B, et al. Incidence of skin cancer in 5356 patients following organ transplantation. Br J Dermatol. 2000;143(3):513–9.

    CAS  PubMed  Google Scholar 

  4. Carucci JA. Cutaneous oncology in organ transplant recipients: meeting the challenge of squamous cell carcinoma. J Invest Dermatol. 2004;123(5):809–16.

    Article  CAS  PubMed  Google Scholar 

  5. Martinez JC, et al. Defining the clinical course of metastatic skin cancer in organ transplant recipients: a multicenter collaborative study. Arch Dermatol. 2003;139(3):301–6.

    Article  PubMed  Google Scholar 

  6. Ong CS, et al. Skin cancer in Australian heart transplant recipients. J Am Acad Dermatol. 1999;40(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  7. Berg D, Otley CC. Skin cancer in organ transplant recipients: epidemiology, pathogenesis, and management. J Am Acad Dermatol. 2002;47(1):1–17. quiz 18-20.

    Article  PubMed  Google Scholar 

  8. Carroll RP, et al. Incidence and prediction of nonmelanoma skin cancer post-renal transplantation: a prospective study in Queensland, Australia. Am J Kidney Dis. 2003;41(3):676–83.

    Article  PubMed  Google Scholar 

  9. Gogia R, et al. Fitzpatrick skin phototype is an independent predictor of squamous cell carcinoma risk after solid organ transplantation. J Am Acad Dermatol. 2013;68(4):585–91.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Winkelhorst JT, et al. Incidence and clinical course of de-novo malignancies in renal allograft recipients. Eur J Surg Oncol. 2001;27(4):409–13.

    Article  CAS  PubMed  Google Scholar 

  11. Idezuki T. Field cancerization and field therapy - the therapy of actinic keratosis by imiquimod. Gan To Kagaku Ryoho. 2013;40(1):1–5.

    PubMed  Google Scholar 

  12. Stockfleth E. Topical management of actinic keratosis and field cancerisation. G Ital Dermatol Venereol. 2009;144(4):459–62.

    CAS  PubMed  Google Scholar 

  13. Berman B, Cohen DE, Amini S. What is the role of field-directed therapy in the treatment of actinic keratosis? Part 1: overview and investigational topical agents. Cutis. 2012;89(5):241–50.

    PubMed  Google Scholar 

  14. Dakubo GD, et al. Clinical implications and utility of field cancerization. Cancer Cell Int. 2007;7:2.

    Article  PubMed  PubMed Central  Google Scholar 

  15. de Gruijl FR, van Kranen HJ, Mullenders LH. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B. 2001;63(1-3):19–27.

    Article  PubMed  Google Scholar 

  16. Ratushny V, et al. From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest. 2012;122(2):464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.

    Article  CAS  PubMed  Google Scholar 

  18. Brash DE, et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A. 1991;88(22):10124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358(6381):15–6.

    Article  CAS  PubMed  Google Scholar 

  20. Jiang W, et al. p53 protects against skin cancer induction by UV-B radiation. Oncogene. 1999;18(29):4247–53.

    Article  CAS  PubMed  Google Scholar 

  21. Ziegler A, et al. Sunburn and p53 in the onset of skin cancer. Nature. 1994;372(6508):773–6.

    Article  CAS  PubMed  Google Scholar 

  22. Nakazawa H, et al. UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc Natl Acad Sci U S A. 1994;91(1):360–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Restivo G, et al. IRF6 is a mediator of Notch pro-differentiation and tumour suppressive function in keratinocytes. EMBO J. 2011;30(22):4571–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu B, et al. Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell. 2012;149(6):1207–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gebhardt C, et al. RAGE signaling sustains inflammation and promotes tumor development. J Exp Med. 2008;205(2):275–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Djerbi N, et al. Influence of cyclosporin and prednisolone on RAGE, S100A8/A9, and NFkappaB expression in human keratinocytes. JAMA Dermatol. 2013;149(2):236–7.

    Article  PubMed  Google Scholar 

  27. Wu X, et al. Opposing roles for calcineurin and ATF3 in squamous skin cancer. Nature. 2010;465(7296):368–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lerche CM, et al. Topical pimecrolimus and tacrolimus do not accelerate photocarcinogenesis in hairless mice after UVA or simulated solar radiation. Exp Dermatol. 2009;18(3):246–51.

    Article  CAS  PubMed  Google Scholar 

  29. Hui RL, et al. Association between exposure to topical tacrolimus or pimecrolimus and cancers. Ann Pharmacother. 2009;43(12):1956–63.

    Article  CAS  PubMed  Google Scholar 

  30. Timmer A, et al. Azathioprine and 6-mercaptopurine for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev. 2012;9:CD000478.

    PubMed  Google Scholar 

  31. O’Donovan P, et al. Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science. 2005;309(5742):1871–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Perrett CM, et al. Azathioprine treatment photosensitizes human skin to ultraviolet A radiation. Br J Dermatol. 2008;159(1):198–204.

    Article  CAS  PubMed  Google Scholar 

  33. Hofbauer GF, et al. Reversal of UVA skin photosensitivity and DNA damage in kidney transplant recipients by replacing azathioprine. Am J Transplant. 2012;12(1):218–25.

    Article  CAS  PubMed  Google Scholar 

  34. Hofbauer GF, Bouwes Bavinck JN, Euvrard S. Organ transplantation and skin cancer: basic problems and new perspectives. Exp Dermatol. 2010;19(6):473–82.

    Article  PubMed  Google Scholar 

  35. Pettersen JS, et al. Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. J Invest Dermatol. 2011;131(6):1322–30.

    Google Scholar 

  36. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    Article  CAS  PubMed  Google Scholar 

  37. Figdor CG, et al. Dendritic cell immunotherapy: mapping the way. Nat Med. 2004;10(5):475–80.

    Article  CAS  PubMed  Google Scholar 

  38. Chu CC, Di Meglio P, Nestle FO. Harnessing dendritic cells in inflammatory skin diseases. Semin Immunol. 2011;23(1):28–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zaba LC, Krueger JG, Lowes MA. Resident and “inflammatory” dendritic cells in human skin. J Invest Dermatol. 2009;129(2):302–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bluth MJ, et al. Myeloid dendritic cells from human cutaneous squamous cell carcinoma are poor stimulators of T-cell proliferation. J Invest Dermatol. 2009;129(10):2451–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Galan A, Ko CJ. Langerhans cells in squamous cell carcinoma vs. pseudoepitheliomatous hyperplasia of the skin. J Cutan Pathol. 2007;34(12):950–2.

    Article  PubMed  Google Scholar 

  42. Nestle FO, et al. Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells. Am J Pathol. 1997;150(2):641–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mimura K, et al. Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2. Cancer Immunol Immunother. 2007;56(6):761–70.

    Article  CAS  PubMed  Google Scholar 

  44. Fujita H, et al. Langerhans cells from human cutaneous squamous cell carcinoma induce strong type 1 immunity. J Invest Dermatol. 2012;132(6):1645–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiang J, Wu C, Lu B. Cytokine-induced killer cells promote antitumor immunity. J Transl Med. 2013;11:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takahara M, et al. Stromal CD10 expression, as well as increased dermal macrophages and decreased Langerhans cells, are associated with malignant transformation of keratinocytes. J Cutan Pathol. 2009;36(6):668–74.

    Article  PubMed  Google Scholar 

  47. Lucas AD, Halliday GM. Progressor but not regressor skin tumours inhibit Langerhans’ cell migration from epidermis to local lymph nodes. Immunology. 1999;97(1):130–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van de Ven R, et al. Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to T-cell activation. Blood. 2011;118(9):2502–10.

    Article  PubMed  CAS  Google Scholar 

  49. Mittelbrunn M, et al. Solar-simulated ultraviolet radiation induces abnormal maturation and defective chemotaxis of dendritic cells. J Invest Dermatol. 2005;125(2):334–42.

    CAS  PubMed  Google Scholar 

  50. Lewis J, et al. The contribution of Langerhans cells to cutaneous malignancy. Trends Immunol. 2010;31(12):460–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Modi BG, et al. Langerhans cells facilitate epithelial DNA damage and squamous cell carcinoma. Science. 2012;335(6064):104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cella M, et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med. 1999;5(8):919–23.

    Article  CAS  PubMed  Google Scholar 

  53. Pfeffer LM, et al. Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons. Cancer Res. 1998;58(12):2489–99.

    CAS  PubMed  Google Scholar 

  54. Hoeffel G, et al. Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity. 2007;27(3):481–92.

    Article  CAS  PubMed  Google Scholar 

  55. Tel J, et al. Human plasmacytoid dendritic cells efficiently cross-present exogenous Ags to CD8+ T cells despite lower Ag uptake than myeloid dendritic cell subsets. Blood. 2013;121(3):459–67.

    Article  CAS  PubMed  Google Scholar 

  56. Tel J, et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res. 2013;73:1063–75.

    Article  CAS  PubMed  Google Scholar 

  57. Urosevic M, et al. Disease-independent skin recruitment and activation of plasmacytoid predendritic cells following imiquimod treatment. J Natl Cancer Inst. 2005;97(15):1143–53.

    Article  CAS  PubMed  Google Scholar 

  58. Lowes MA, et al. Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc Natl Acad Sci U S A. 2005;102(52):19057–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang FP, et al. Nitric oxide regulates Th1 cell development through the inhibition of IL-12 synthesis by macrophages. Eur J Immunol. 1998;28(12):4062–70.

    Article  CAS  PubMed  Google Scholar 

  60. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449(7161):419–26.

    Article  CAS  PubMed  Google Scholar 

  61. Janeway Jr CA. How the immune system protects the host from infection. Microbes Infect. 2001;3(13):1167–71.

    Article  CAS  PubMed  Google Scholar 

  62. Huang SJ, et al. Imiquimod enhances IFN-gamma production and effector function of T cells infiltrating human squamous cell carcinomas of the skin. J Invest Dermatol. 2009;129(11):2676–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martinez-Sosa P, Mendoza L. The regulatory network that controls the differentiation of T lymphocytes. Biosystems. 2013;113:96–103.

    Article  CAS  PubMed  Google Scholar 

  64. Walton S, Mandaric S, Oxenius A. CD4 T cell responses in latent and chronic viral infections. Front Immunol. 2013;4:105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Zhang S, et al. Increased Tc22 and Treg/CD8 ratio contribute to aggressive growth of transplant associated squamous cell carcinoma. PLoS One. 2013;8(5):e62154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Clark RA, et al. Human squamous cell carcinomas evade the immune response by down-regulation of vascular E-selectin and recruitment of regulatory T cells. J Exp Med. 2008;205(10):2221–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Halliday GM, et al. Spontaneous regression of human melanoma/nonmelanoma skin cancer: association with infiltrating CD4+ T cells. World J Surg. 1995;19(3):352–8.

    Article  CAS  PubMed  Google Scholar 

  68. Kim ST, et al. Tumor-infiltrating lymphocytes, tumor characteristics, and recurrence in patients with early breast cancer. Am J Clin Oncol. 2012;36:224–31.

    Article  CAS  Google Scholar 

  69. Yu P, Fu YX. Tumor-infiltrating T lymphocytes: friends or foes? Lab Invest. 2006;86(3):231–45.

    Article  CAS  PubMed  Google Scholar 

  70. Rutella S, Lemoli RM. Regulatory T cells and tolerogenic dendritic cells: from basic biology to clinical applications. Immunol Lett. 2004;94(1–2):11–26.

    Article  CAS  PubMed  Google Scholar 

  71. Beyer M, Schultze JL. Regulatory T cells in cancer. Blood. 2006;108(3):804–11.

    Article  CAS  PubMed  Google Scholar 

  72. Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med. 1998;188(2):287–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ng WF, et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood. 2001;98(9):2736–44.

    Article  CAS  PubMed  Google Scholar 

  74. Kosmidis M, et al. Immunosuppression affects CD4+ mRNA expression and induces Th2 dominance in the microenvironment of cutaneous squamous cell carcinoma in organ transplant recipients. J Immunother. 2010;33(5):538–46.

    Article  CAS  PubMed  Google Scholar 

  75. Cederbom L, Hall H, Ivars F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol. 2000;30(6):1538–43.

    Article  CAS  PubMed  Google Scholar 

  76. Bluth MJ, et al. Regulatory T cells are associated with the human cutaneous SCC microenvironment and suppress activation of naive T cells stimulated by CD3/28. J Invest Dermatol. 2010;130:S58.

    Google Scholar 

  77. Bates GJ, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol. 2006;24(34):5373–80.

    Article  PubMed  Google Scholar 

  78. Wolf D, et al. The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res. 2005;11(23):8326–31.

    Article  CAS  PubMed  Google Scholar 

  79. Ikeda H, Old LJ, Schreiber RD. The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev. 2002;13(2):95–109.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang N, Pan HF, Ye DQ. Th22 in inflammatory and autoimmune disease: prospects for therapeutic intervention. Mol Cell Biochem. 2011;353(1–2):41–6.

    Article  CAS  PubMed  Google Scholar 

  81. Wolk K, et al. Biology of interleukin-22. Semin Immunopathol. 2010;32(1):17–31.

    Article  CAS  PubMed  Google Scholar 

  82. Witte E, et al. Interleukin-22: a cytokine produced by T, NK and NKT cell subsets, with importance in the innate immune defense and tissue protection. Cytokine Growth Factor Rev. 2010;21(5):365–79.

    Article  CAS  PubMed  Google Scholar 

  83. Jabbari A, Johnson-Huang LM, Krueger JG. Role of the immune system and immunological circuits in psoriasis. G Ital Dermatol Venereol. 2011;146(1):17–30.

    CAS  PubMed  Google Scholar 

  84. Nograles KE, et al. IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol. 2009;123(6):1244–52. e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gelebart P, et al. Interleukin 22 signaling promotes cell growth in mantle cell lymphoma. Transl Oncol. 2011;4(1):9–19.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jiang R, et al. Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology. 2011;54(3):900–9.

    Article  CAS  PubMed  Google Scholar 

  87. Ziesche E, et al. The interleukin-22/STAT3 pathway potentiates expression of inducible nitric-oxide synthase in human colon carcinoma cells. J Biol Chem. 2007;282(22):16006–15.

    Article  CAS  PubMed  Google Scholar 

  88. Huber S, et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature. 2012;491(7423):259–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Curd LM, Favors SE, Gregg RK. Pro-tumour activity of interleukin-22 in HPAFII human pancreatic cancer cells. Clin Exp Immunol. 2012;168(2):192–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Swartz MA, et al. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res. 2012;72(10):2473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64.

    Article  CAS  PubMed  Google Scholar 

  92. Wang YC, et al. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 2010;70(12):4840–9.

    Article  CAS  PubMed  Google Scholar 

  93. Steidl C, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Romieu-Mourez R, et al. Distinct roles for IFN regulatory factor (IRF)-3 and IRF-7 in the activation of antitumor properties of human macrophages. Cancer Res. 2006;66(21):10576–85.

    Article  CAS  PubMed  Google Scholar 

  95. Lin EY, Pollard JW. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 2007;67(11):5064–6.

    Article  CAS  PubMed  Google Scholar 

  96. Hung K, et al. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med. 1998;188(12):2357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Moussai D, et al. The human cutaneous squamous cell carcinoma microenvironment is characterized by increased lymphatic density and enhanced expression of macrophage-derived VEGF-C. J Invest Dermatol. 2011;131(1):229–36.

    Article  CAS  PubMed  Google Scholar 

  98. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.

    Article  CAS  PubMed  Google Scholar 

  99. Hamada K, et al. VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood. 2000;96(12):3793–800.

    CAS  PubMed  Google Scholar 

  100. Baek SK, et al. Prognostic significance of vascular endothelial growth factor-C expression and lymphatic vessel density in supraglottic squamous cell carcinoma. Laryngoscope. 2009;119(7):1325–30.

    Article  CAS  PubMed  Google Scholar 

  101. Sugiura T, et al. VEGF-C and VEGF-D expression is correlated with lymphatic vessel density and lymph node metastasis in oral squamous cell carcinoma: implications for use as a prognostic marker. Int J Oncol. 2009;34(3):673–80.

    Article  CAS  PubMed  Google Scholar 

  102. Boone B, et al. The role of VEGF-C staining in predicting regional metastasis in melanoma. Virchows Arch. 2008;453(3):257–65.

    Article  CAS  PubMed  Google Scholar 

  103. Franses JW, et al. Stromal endothelial cells directly influence cancer progression. Sci Transl Med. 2011;3(66):66ra5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Belkin DA, et al. CD200 upregulation in vascular endothelium surrounding cutaneous squamous cell carcinoma. JAMA Dermatol. 2013;149(2):178–86.

    Article  CAS  PubMed  Google Scholar 

  105. Meuth SG, et al. CNS inflammation and neuronal degeneration is aggravated by impaired CD200-CD200R-mediated macrophage silencing. J Neuroimmunol. 2008;194(1-2):62–9.

    Article  CAS  PubMed  Google Scholar 

  106. Broderick C, et al. Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis. Am J Pathol. 2002;161(5):1669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Carucci MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yanofsky, V., Carucci, J.A., Hofbauer, G.F.L. (2016). Molecular and Cellular Interplay in SCC Including Immunomodulation and Clinical Implications. In: Schmults, C. (eds) High-Risk Cutaneous Squamous Cell Carcinoma. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47081-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47081-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47080-0

  • Online ISBN: 978-3-662-47081-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics