Skip to main content

Bioactive Ceramic Coatings

  • Chapter
Advances in Metallic Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 4))

Abstract

Some kinds of metals, such as titanium and its alloys, bond directly to living bone without fibrous tissue. One of the key techniques for enhancing bone-forming ability of the metallic biomaterials is to modify their surface using bioactive ceramics. This chapter introduces various coatings on the metals to give high bioactivity, which is to have an effect on bonding to living bone. The first section is concerned with bioactive ceramic coatings using calcium phosphates or calcium silicates. These coatings show high bonding strength and enhance the biocompatibility, which refers to ability of materials to interact with living tissue and cells, in vivo and in vitro. The next section describes bioactive glass and glass-ceramic coatings on the metal surface. These materials have a significant advantage in that their chemical/physical properties can be controlled by the choice of the chemical composition. The third section is concerned with modification of Ti and its alloys for forming bioactive oxide layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neo M, Kotani S, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo T, Bando Y (1992) A comparative study of ultrastructure of the interface between four kinds of surface-active ceramic and bone. J Biomed Mater Res 26:1419–1432

    Article  Google Scholar 

  2. Kokubo T (1990) Surface chemistry of bioactive glass–ceramics. J Non-Cryst Solids 120:138–151

    Article  Google Scholar 

  3. Kokubo T (1998) Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater 46:2519–2527

    Article  Google Scholar 

  4. Kim H-M, Himeno T, Kawashita M, Kokubo T, Nakamura T (2004) The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment. J R Soc Interface 1:17–22

    Article  Google Scholar 

  5. Mohseni E, Zalnezhad E, Bushroa AR (2014) Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4 V implant: a review paper. Inter J Adhes Adhes 48:238–257

    Article  Google Scholar 

  6. de Groot K, Geesink R, Klein CPAT, Serekian P (1987) Plasma sprayed coatings of hydroxyapatite. J Biomed Mater Res 21:1375–1381

    Article  Google Scholar 

  7. Yang YC, Chang E (2001) Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrate. Biomaterials 22:1827–1839

    Article  Google Scholar 

  8. Fu L, Khor KA, Lin JP (2002) Effects of yttria-stabilized zirconia on plasma-sprayed hydroxyapatite/yttria-stabilized zirconia composite coatings. J Am Ceram Soc 85:800–806

    Article  Google Scholar 

  9. Lo WJ, Grant DM, Ball MD, Welsh BS, Howdle SM, Antonov EN, Bagratashvili VN, Popov VK (2000) Physical, chemical, and biological characterization of pulsed laser deposition and plasma sputtered hydroxyapatite thin films on titanium alloy. J Biomed Mater Res 50:536–545

    Article  Google Scholar 

  10. van Dijk K, Schaeken HG, Wolke JGC, Jansen JA (1996) Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials 17:405–410

    Article  Google Scholar 

  11. Zhitomirsky I, Gal-Or L (1997) Electrophoretic deposition of hydroxyapatite. J Mater Sci Mater Med 8:213–219

    Article  Google Scholar 

  12. Borum-Nicholas L, Wilson OC (2003) Surface modification of hydroxyapatite. Part I Dodecyl alcohol. Biomaterials 24:3671–3679

    Article  Google Scholar 

  13. Xiao XF, Liu RF (2006) Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings. Mater Lett 60:2627–2632

    Article  Google Scholar 

  14. Ducheyne P, Radin S, Heughebaert J (1990) Calcium phosphate ceramic coatings on porous titanium: effect if structured and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution. Biomaterials 11:244–254

    Article  Google Scholar 

  15. Wei M, Ruys A, Swain M, Kim S, Milthorpe B, Sorrell C (1999) Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals. J Mater Sci Mater Med 10:401–409

    Article  Google Scholar 

  16. Nguyen HQ, Deporter DA, Pilliar RM, Valiquette N, Yakubovich R (2004) The effect of sol–gel formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants. Biomaterials 25:865–876

    Article  Google Scholar 

  17. Farrokhi-Rad M, Loghmani SK, Shahrabi T, Khanmohammadi S (2014) Electrophoretic deposition of hydroxyapatite nanostructured coatings with controlled porosity. J Eur Ceram Soc 34:97–106

    Article  Google Scholar 

  18. Chen Q, Cordero-Arias L, Roether JA, Cabanas-Polo S, Virtanen S, Boccaccini AR (2013) Alginate/Bioglass® composite coatings on stainless steel deposited by direct current and alternating current electrophoretic deposition. Surf Coat Technol 233:49–56

    Article  Google Scholar 

  19. Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I (2010) Electrophoretic deposition of biomaterials. J R Soc Interface 7:S581–S613

    Article  Google Scholar 

  20. Doi Y, Shibutani T, Moriwaki Y, Kajimoto T, Iwayama Y (1998) Sintered carbonate apatites as bioresorbable bone substitutes. J Biomed Mater Res 39:603–610

    Article  Google Scholar 

  21. Oyane A, Kawashita M, Nakanishi K, Kokubo T, Minoda M, Miyamoto T, Nakamura T (2003) Bonelike apatite formation on ethylene-vinyl alcohol copolymer modified with silane coupling agent and calcium silicate solutions. Biomaterials 24:1729–1735

    Article  Google Scholar 

  22. Kawashita M, Nakao M, Minoda M, Kim H-M, Beppu T, Miyamoto T, Kokubo T, Nakamura T (2003) Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials 24:2477–2484

    Article  Google Scholar 

  23. Ohtsuki C, Kokubo T, Yamauro T (1992) Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J Non-Cryst Solids 143:84–92

    Article  Google Scholar 

  24. Li P, Ducheyne P (1998) Quasi-biological apatite film induced by titanium in a simulated body fluid. J Biomed Mater Res 41:341–348

    Article  Google Scholar 

  25. Barrere F, van Blitterswijk CA, de Groot K, Layrolle P (2002) Nucleation of biomimetic Ca-P coatings on Ti6Al4V from a SBF × 5 solution: influence of magnesium. Biomaterials 23:2211–2220

    Article  Google Scholar 

  26. Tanahashi M, Yao T, Kokubo T, Minoda M, Miyamoto T, Nakamura T, Yamamuro T (1994) Apatite coating on organic polymer by a biomimetic process. J Am Ceram Soc 77:2085–2808

    Article  Google Scholar 

  27. Maeda H, Maquet V, Kasuga T, Chen QZ, Roether JA, Boccaccini AR (2007) Vaterite deposition on biodegradable polymer foam scaffolds for inducing bone-like hydroxyapatite coatings. J Mater Sci Mater Med 18:2269–2273

    Article  Google Scholar 

  28. Maeda H, Maquet V, Chen QZ, Kasuga T, Jawad H, Boccaccini AR (2007) Bioactive coatings by vaterite deposition on polymer substrates of different composition and morphology. Mater Sci Eng C 27:741–745

    Article  Google Scholar 

  29. Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B (1989) Transformation of biphasic calcium phosphate in vivo: ultrastructural and physico-chemical characterization. J Biomed Mater Res 23:883–894

    Article  Google Scholar 

  30. Daculsi G, Delectrin J (1994) Biological transformation of calcium phosphate coating in human. Microcharacterization using scanning electron microscopy and high resolution transmission electron microscopy. Cells Mater 4:63–71

    Google Scholar 

  31. Boyd AR, O’Kane C, O’Hare P, Burke GA, Meenan BJ (2013) The influence of target stoichiometry on early cell adhesion of co-sputtered calcium phosphate surfaces. J Mater Sci Mater Med 24:2845–2861

    Article  Google Scholar 

  32. Siriphannon P, Hayashi S, Yasumori A, Okada K (1999) Preparation and sintering of CaSiO3 from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution. J Mater Res 14:529–536

    Article  Google Scholar 

  33. Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, Ning C (2008) Reconstruction of calvarial defect of rabbit using porous calcium silicate bioactive ceramics. Biomaterials 29:2588–2596

    Article  Google Scholar 

  34. Liu X, Ding C, Wang Z (2001) Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid. Biomaterials 22:2007–2012

    Article  Google Scholar 

  35. Lamy D, Pierrc AC, Heimann RB (1996) Hydroxyapatite coatings with a bond coat of biomedical implants by plasma project. J Mater Res 11:680–689

    Article  Google Scholar 

  36. Liu X, Tao S, Ding C (2002) Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials 23:963–968

    Article  Google Scholar 

  37. Nakajima S (1990) Experimental studies of healing process on reinforcement ceramic implantation in rabbit mandible. Shikwa Gakuho 90:525–553 (in Japanese)

    Google Scholar 

  38. Nonami T, Takahashi C, Yamazaki J (1995) Synthesis of diopside by alkoxide method and coating on titanium. J Ceram Soc Jpn 103:703–708 (in Japanese)

    Article  Google Scholar 

  39. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 296:1014–1017

    Article  Google Scholar 

  40. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp 334:117–141

    Article  Google Scholar 

  41. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276:461–465

    Article  Google Scholar 

  42. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486

    Article  Google Scholar 

  43. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774

    Article  Google Scholar 

  44. Nakamura T, Yamamuro T, Higashi S, Kokubo T, Ito S (1985) A new glass-ceramic for bone replacement: evaluation of its bonding to bone tissue. J Biomed Mater Res 19:685–698

    Article  Google Scholar 

  45. Kokubo T, Ito S, Shigematsu M, Sakka S, Yamamuro T (1985) Mechanical properties of a new type of apatite-containing glass-ceramic for prosthetic application. J Mater Sci 20:2001–2004

    Article  Google Scholar 

  46. Kitsugi T, Nakamura T, Oka M, Senaha Y, Goto T, Shibuya T (1996) Bone-bonding behavior of plasma-sprayed coatings of BioglassR, AW-glass ceramic, and tricalcium phosphate on titanium alloy. J Biomed Mater Res 30:261–269

    Article  Google Scholar 

  47. Pazo A, Saiz E, Tomsia AP (1998) Silicate glass coatings on Ti-based implants. Acta Mater 46:2551–2558

    Article  Google Scholar 

  48. Gomez-Vega JM, Saiz E, Tomsia AP (1999) Glass-based coatings for titanium implant alloys. J Biomed Mater Res 46:549–559

    Article  Google Scholar 

  49. Gomez-Vega JM, Saiz E, Tomsia AP, Marshall GW, Marshall SJ (2000) Bioactive glass coatings with hydroxyapatite and Bioglass® particles on Ti-based implants. 1. Processing. Biomaterials 21:105–111

    Article  Google Scholar 

  50. Obata A, Kasuga T, Jones JR (2011) Hydroxyapatite coatings incorporating silicon ion releasing system on titanium prepared using water glass and vaterite. J Am Ceram Soc 94:2074–2079

    Article  Google Scholar 

  51. Navarro M, Ginebra M-P, Planell JA (2003) Cellular response to calcium phosphate glasses with controlled solubility. J Biomed Mater Res A 67A:1009–1015

    Article  Google Scholar 

  52. Shu C, Wenjuan Z, Xu G, Wei Z, Wei J, Dongmei W (2010) Dissolution behavior and bioactivity study of glass ceramic scaffolds in the system of CaO-P2O5-Na2O-ZnO prepared by sol–gel technique. Mater Sci Eng C 30:105–111

    Article  Google Scholar 

  53. Ahmed I, Parsons A, Jones A, Walker G, Scotchford C, Rudd C (2010) Cytocompatibility and effect of increasing MgO content in a range of quaternary invert phosphate-based glasses. J Biomater Appl 24:555–575

    Article  Google Scholar 

  54. Ohtsuki C, Kokubo T, Takahara K, Yamamuro T (1991) Compositional dependence of bioactivity of glasses in the system CaO-SiO2-P2O5: its in vitro evaluation. J Ceram Soc Jpn 99:1–6

    Article  Google Scholar 

  55. Kasuga T (2005) Bioactive calcium pyrophosphate glasses and glass-ceramics. Acta Biomater 1:55–64

    Article  Google Scholar 

  56. Kasuga T, Abe Y (1999) Calcium phosphate invert glasses with soda and titania. J Non-Cryst Solids 243:70–74

    Article  Google Scholar 

  57. Kasuga T, Hosoi Y, Nogami M, Niinomi M (2001) Apatite formation on calcium phosphate invert glass in simulated body fluid. J Am Ceram Soc 84:450–452

    Article  Google Scholar 

  58. Kasuga T, Abe Y (1998) Novel calcium phosphate ceramics prepared by powder-sintering and crystallization of glasses in the pyrophosphate region. J Mater Res 13:3357–3360

    Article  Google Scholar 

  59. Kasuga T, Sawada M, Nogami M, Abe Y (1999) Bioactive ceramics prepared by sintering and crystallization of calcium phosphate invert glasses. Biomaterials 20:1415–1420

    Article  Google Scholar 

  60. Kasuga T, Nogami M, Niinomi M (2003) Calcium phosphate glass-ceramics for bioactive coating on a β-titanium alloy. Adv Eng Mater 5:498–501

    Article  Google Scholar 

  61. Kasuga T, Mizuno T, Watanabe M, Nogami M, Niinomi M (2001) Calcium phosphate invert glass-ceramic coatings joined by self-development of compositionally gradient layers on a titanium alloy. Biomaterials 22:577–582

    Article  Google Scholar 

  62. Kasuga T, Nogami M, Httori T, Niinomi M, Hench LL (2005) Enhancing effect of autoclaving on bioactivity of β-titanium alloy coated with calcium phosphate glass-ceramic. Key Eng Mater 284–286:243–246

    Article  Google Scholar 

  63. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K (1994) The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res 28:7–14

    Article  Google Scholar 

  64. Kokubo T, Miyaji F, Kim H-M, Nakamura T (1996) Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J Am Ceram Soc 79:1127–1129

    Article  Google Scholar 

  65. Kim H-M, Miyaji F, Kokubo T, Nishiguchi S, Nakamura T (1999) Graded surface structure of bioactive titanium prepared by chemical treatment. J Biomed Mater Res 45:100–107

    Article  Google Scholar 

  66. Uchida M, Kim HM, Kokubo T, Nakamura T (1999) Apatite-forming ability of titania gels with different structure. Bioceramics 12:149–152

    Google Scholar 

  67. Kizuki T, Takadama H, Matsushita T, Nakamura T, Kokubo T (2010) Preparation of bioactive Ti metal surface enriched with calcium ions by chemical treatment. Acta Biomater 6:2836–2842

    Article  Google Scholar 

  68. Tengvall P, Lundstrom I, Sjoqvist L, Elwing H (1989) Titanium-hydrogen peroxide interaction: model studies of the influence of the inflammatory response on titanium implants. Biomaterials 10:166–175

    Article  Google Scholar 

  69. Wang X-X, Hayakawa S, Tsuru K, Osaka A (2002) Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 23:1353–1357

    Article  Google Scholar 

  70. Wu JM, Hayakawa S, Tsuru K, Osaka A (2004) Low temperature preparation of anatase and rutile layers on titanium substrates and their ability to induce in vitro apatite deposition. J Am Ceram Soc 87:1635–1642

    Article  Google Scholar 

  71. Kawai T, Takemoto M, Fujibayashi S, Neo M, Akiyama H, Yamaguchi S, Pattanayak DK, Matsushita T, Nakamura T, Kokubo T (2012) Bone-bonding properties of Ti metal subjected to acid and heat treatments. J Mater Sci Mater Med 23:2981–2992

    Article  Google Scholar 

  72. Ishizaki H, Ogino H (1995) Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 29:1071–1079

    Article  Google Scholar 

  73. Yang B, Uchida M, Kim H-M, Zhang X, Kokubo T (2004) Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25:1003–1010

    Article  Google Scholar 

  74. Xie L, Yin G, Yan D, Liao X, Huang Z, Yao Y, Kang Y, Liu Y (2010) Structure, morphology and fibroblasts adhesion of surface-porous titanium via anodic oxidation. J Mater Sci Mater Med 21:259–266

    Article  Google Scholar 

  75. Li P, Kangasniemi I, de Groot K, Kokubo T (1994) Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate. J Am Ceram Soc 77:1307–1312

    Article  Google Scholar 

  76. Peltola T, Pätsi M, Kangasniemi I, Yli-Urpo A (1998) Calcium phosphate induction by sol–gel-derived titania coatings on titanium substrates in vivo. J Biomed Mater Res 42:504–510

    Article  Google Scholar 

  77. Kim H-W, Koh Y-H, Li L-H, Lee S, Kim H-E (2004) Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol–gel method. Biomaterials 25:2533–2538

    Article  Google Scholar 

  78. Velten D, Biehl V, Aubertin F, Valeske B, Possart W, Breme J (2002) Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol–gel coating techniques and their characterization. J Biomed Mater Res 59:18–28

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maeda, H., Kasuga, T. (2015). Bioactive Ceramic Coatings. In: Niinomi, M., Narushima, T., Nakai, M. (eds) Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46842-5_5

Download citation

Publish with us

Policies and ethics