Skip to main content

Advertisement

Log in

Structure, morphology and fibroblasts adhesion of surface-porous titanium via anodic oxidation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Surface-porous titanium samples were prepared by anodic oxidation in H2SO4, H3PO4 and CH3COOH electrolytes under various electrochemical conditions. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were employed to characterize the structure, morphology and chemical composition of the surface layer, respectively. Closer analysis on the effect of the electrochemical conditions on pore configuration was involved. It can be indicated that porous titania was formed on the surface layer, and the pore configuration was influenced by electrolyte composition and crystal structure of the titania. The fibroblast cells experiment showed that anodic oxidation of titanium surface could promote fibroblast adhesion on Ti substrate. The results suggested that anodic oxidation of Ti in CH3COOH was suitable to obtain surface-porous titanium oxides layers, which might be beneficial for better soft tissue ingrowths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Noort R. Titanium: the implant material of today. J Mater Sci. 1987;22:3801–11.

    Article  ADS  Google Scholar 

  2. Wang K. The use of titanium for medical applications in the USA. Mater Sci Eng. 1996;213 A:134–7.

    Google Scholar 

  3. Brash JL. Biomaterials in Canada: the first four decades. Biomaterials. 2005;26:7209–20.

    Article  CAS  PubMed  Google Scholar 

  4. Puleo DA, Kissling RA, Sheu MS. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials. 2002;23:2079–87.

    Article  CAS  PubMed  Google Scholar 

  5. Caulier H, Vercaigne S, Naert I, Waerden JVD, Wolke J, Kalke W, et al. The effect of Ca-P plasma-sprayed coatings on the initial bone healing of oral implants: an experimental study in the goat. J Biomed Mater Res. 1997;34:121–8.

    Article  CAS  PubMed  Google Scholar 

  6. Kim HM, Miyaji F, Kokubo T, Nishuguchi S, Nakamura T. Grade surface structure of bioactive titanium prepared by chemical treatment. J Biomed Mater Res. 1999;45:100–7.

    Article  CAS  PubMed  Google Scholar 

  7. Kim HM, Miyaji F, Kokubo T, Nakamura T. Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J Mater Sci: Mater Med. 1997;8:341–7.

    Article  CAS  Google Scholar 

  8. Kim HM, Kokubo T, Miyaji F, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res. 1996;32:409–17.

    Article  CAS  PubMed  Google Scholar 

  9. Liang B, Fujibayashi S, Neo M, Tamura J, Kim HM, Uchida M, et al. Histological and mechanical investigation of the bone-bonding ability of anodically oxidized titanium in rabbits. Biomaterials. 2003;24:4959–66.

    Article  CAS  PubMed  Google Scholar 

  10. Yang BC, Uchida M, Kim HM, Zhang XD, Kokubo T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials. 2004;25:1003–10.

    Article  CAS  PubMed  Google Scholar 

  11. Cui X, Kim HM, Kawashit M, Wang L, Xiong T, Kokubo T, et al. Preparation of bioactive titania films on titanium metal via anodic oxidation. Dent Mater. 2009;25:80–6.

    Article  CAS  PubMed  Google Scholar 

  12. Oh HJ, Lee JH, Kim YJ, Suh SJ, Lee JH, Chi CS. Surface characteristics of porous anodic TiO2 layer for biomedical applications. Mater Chem Phys. 2008;109:10–4.

    CAS  Google Scholar 

  13. Pilliar RM. Powder metal-made orthopedic implants with porous surface for fixation by tissue ingrowth. Clin Orthop. 1983;176:42–51.

    CAS  PubMed  Google Scholar 

  14. Gottsauner-Wolf F, Egger EL, Schultz FM, Sim FH, Chao EY. Tendons attached to prostheses by tendon-bone block fixation: an experimental study in dogs. J Orthop Res. 1994;12:814–21.

    Article  CAS  PubMed  Google Scholar 

  15. LaBerge M, Bobyn JD, Rivard CH, Drouin G, Duval P. Study of soft tissue ingrowth into canine porous coated femoral implants designed for osteosarcomas management. J Biomed Mater Res. 1990;24:959–71.

    Article  CAS  PubMed  Google Scholar 

  16. Bobyn JD, Hacking SA, Tanzer M, Krygier JJ. Tissue response to porous coated acetabular cups: a canine model. J Arthrop. 1999;14:347–54.

    Article  CAS  Google Scholar 

  17. Kon M, Hirakata LM, Asaoka K. Porous Ti-6Al-4 V alloy fabricated by spark plasma sintering for biomimetic surface modification. J Biomed Mater Res. 2004;68B:88–93.

    Article  CAS  Google Scholar 

  18. Thelen S, Barthelat F, Brinson LC. Mechanics considerations for microporous titanium as an orthopedic implant material. J Biomed Mater Res. 2004;69A:601–10.

    Article  CAS  Google Scholar 

  19. Assad M, Jarzem P, Leroux MA, Coillard C, Chernyshov AV, Charette S, et al. Porous titanium–nickel for intervertebral fusion in a sheep model: part 1. Histomorphometric and radiological analysis. J Biomed Mater Res. 2003;64B:107–20.

    Article  CAS  Google Scholar 

  20. Assad M, Chernyshov AV, Jarzem P, Leroux MA, Coillard C, Charette S, et al. Porous titanium–nickel for intervertebral fusion in a sheep model: part 2. Surface analysis and nickel release assessment. J Biomed Mater Res. 2003;64B:121–9.

    Article  CAS  Google Scholar 

  21. Wen CE, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M. Processing and mechanical properties of autogenous titanium implant materials. J Mater Sci: Mater Med. 2002;13:397–401.

    Article  CAS  Google Scholar 

  22. Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie R. Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res. 2001;58:180–7.

    Article  CAS  PubMed  Google Scholar 

  23. Garrett R, Abhay P, Dimitrios PA. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27:2651–70.

    Article  Google Scholar 

  24. Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T. Osteoinduction of porous bioactive titanium metal. Biomaterials. 2004;25:443–50.

    Article  CAS  PubMed  Google Scholar 

  25. Park IS, Lee MH, Bae TS, Seol KW. Effects of anodic oxidation parameters on a modified titanium surface. J Biomed Mater Res Part B: Appl Biomater. 2008;84B:422–9.

    Article  CAS  Google Scholar 

  26. Sul YT, Johansson CB, Jeong YS, Albrektsson T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys. 2001;23:329–46.

    Article  CAS  PubMed  Google Scholar 

  27. Kuromoto NK, Simão RA, Soares GA. Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages. Mater Charact. 2007;58:114–21.

    Article  CAS  Google Scholar 

  28. Zwilling V, Aucouturier M, Ceretti ED. Anodic oxidation of titanium and TA6 V alloy in chromic media. An electrochemical approach. Electrochim Acta. 1999;45:921–9.

    Article  CAS  Google Scholar 

  29. Sul YT, Johansson CB, Petronis S, Krozer A, Jeong YS, Wennerberg A, et al. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials. 2002;23:491–501.

    Article  CAS  PubMed  Google Scholar 

  30. Lin CS, Chen MT, Liu JH. Structural evolution and adhesion of titanium oxide film containing phosphorus and calcium on titanium by anodic oxidation. J Biomed Mater Res. 2008;85A:378–87.

    Article  CAS  Google Scholar 

  31. Oliveira MV, Pereira LC, Cairo CAA. Porous structure characterization in titanium coating for surgical implants. Mater Res. 2002;5:269–73.

    CAS  Google Scholar 

  32. Sul YT, Johansson CB, Jeong YS, Albrektsson T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys. 2001;23:329–46.

    Article  CAS  PubMed  Google Scholar 

  33. Wu HH, Lu XY, Long BH, Wang XQ, Wang JB, Jin ZS. The effects of cathodic and anodic voltages on the characteristics of porous nanocrystalline titania coatings fabricated by microarc oxidation. Mater Lett. 2005;59:370–5.

    Article  CAS  Google Scholar 

  34. Dervos CT, Thirios Ef, Novacovich J, Vassiliou P, Skafidas P. Permittivity properties of thermally treated TiO2. Mater Lett. 2004;58:1502–7.

    Article  CAS  Google Scholar 

  35. Christenson EM, Anseth KS. Nanobiomaterial applications in orthopedics. J Orthop Res. 2007;25:11–22.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang F, Shi ZL, Chua PH, Kang ET, Neoh KG. Functionalization of titanium surfaces via controlled living radical polymerization: from antibacterial surface to surface for osteoblast adhesion. Ind Eng Chem Res. 2007;46:9077–86.

    Article  CAS  Google Scholar 

  37. Ou KL, Shih YH, Huang CF, Chen CC, Liu CM. Preparation of bioactive amorphous-like titanium oxide layer on titanium by plasma oxidation treatment. Appl Surf Sci. 2008;255:2046–51.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgment

This work has been supported by the National Natural Science Foundation of China (project no. 60871062 and 50873066). The supports of Sichuan Province through a Science Fund for Distinguished Young Scholars of Sichuan Province (08ZQ026-007) and Key Technologies Research and Development Program of Sichuan Province (2008SZ0021 and 2006Z08-001-1) are also acknowledged with gratitude. This work was also supported by the Specialized Research Fund for the Doctoral Program of Higher Education from Ministry of Education of China (No. 20070610131). We thank Analytical & Testing Center, Sichuan University for the assistance with the microscopy work. The authors would also like to thank Mrs. Hui Wang of Analytical & Testing Center, Sichuan University for her support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, L., Yin, G., Yan, D. et al. Structure, morphology and fibroblasts adhesion of surface-porous titanium via anodic oxidation. J Mater Sci: Mater Med 21, 259–266 (2010). https://doi.org/10.1007/s10856-009-3832-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3832-z

Keywords

Navigation