Skip to main content

Bildkontraste bei statischen Aufnahmen in der klinischen Magnetresonanztomographie

Teil 2: Sequenzen für verschiedene Kontraste und Anwendungen

  • Chapter
Weiterbildung Radiologie
  • 1584 Accesses

Zusammenfassung

Der zweite Teil der Weiterbildung geht auf Sequenztechniken in der Magnetresonanztomographie (MRT) und auf die passenden Messparameter für verschiedene Kontrastgewichtungen ein. Er baut dabei auf den kürzlich erschienenen ersten Teil auf, der sich mit den relevanten Gewebeeigenschaften für die wichtigsten Kontrastmechanismen befasste. Außerdem werden die Charakteristika der Kontrastgewichtungen an Bildbeispielen von gesunden Probanden erläutert. Typische klinische Anwendungen für die Kontrastgewichtungen werden angesprochen. Sequenztechniken für folgende Kontraste sind enthalten: Protonendichte (d. h. Wasserstoffdichte an kleinen beweglichen Molekülen), Relaxationszeiten T1 und T2, chemische Verschiebung (Wasser und Fett), Effekte der magnetischen Suszeptibilität, eingeschränkte Diffusionsbewegung der Wassermoleküle sowie Magnetisierungstransfer zwischen Makromolekülen und Wassermolekülen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 17.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Robson MD, BydderGM (2006) Clini- cal ultrashort echo time imaging of boneand other connectivetissues. NMR Biomed 19:765–780

    Article  PubMed  Google Scholar 

  2. GatehousePD, BydderGM (2003) Magnetic resonance imaging of shortT2 components in tissue. Clin Radiol 58:1–19

    Article  Google Scholar 

  3. Essig M, Knopp MV, Debus J et al (1999) Fluid-attenuated-inversion- recovery (FLAIR) imaging in the dia- gnosis of cerebral gliomas and meta- stases. Radiologe 39:151–160

    Article  CAS  PubMed  Google Scholar 

  4. Bandai H, Tsunoda A, Mitsuoka H et al (2002) Fast inversion recovery magnetic resonance imaging with the real reconstruction method:a diagnostic tool for cerebral gliomas. Neurol Med Chir (Tokyo) 42(1 ):5–10

    Article  Google Scholar 

  5. Stehling MK, NitzW, Holzknecht N (1995) Fast and ultra-fast magnetic resonance tomography. Basic prin- ciples, pulse sequences and special properties. Radiologe 35:879–893

    CAS  PubMed  Google Scholar 

  6. Pruessmann KP, WeigerM, Scheidegger MB et al (1999) SENSE: sensiti- vity encoding for fast MRI. Magn Re- son Med 42:952–962

    Google Scholar 

  7. Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized auto- calibrating partially parallel acqui- sitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  8. GandonY, Guyader D, HeautotJF et al (1994) Hemochromatosis:diagno- sis and quantification of liver iron with gradient-echo MR imaging. Ra- diology 193:533–538

    Google Scholar 

  9. Ernst RR, Anderson WA (1966) Application of Fourier transform spectro- scopy to magnetic resonance. Rev Sei Instrum 37:93–102

    Article  CAS  Google Scholar 

  10. Stark DD, Wittenberg J, Middleton MS, Ferrucci JT Jr (1986) Liver meta- stases: detection by phase-contrast MR imaging. Radiology 158:327–332

    Article  CAS  PubMed  Google Scholar 

  11. Namimoto T, Yamashita Y, Mitsuzaki K et al (2001) Adrenal masses: quantification offat content with doubleecho Chemical shift in-phase and op- posed-phase FLASH MR imagesfor differentiation of adrenal adenomas. Radiology 218:642–646

    Article  CAS  PubMed  Google Scholar 

  12. Schick F, Förster J, Machann J et al (1997) Highly selective water and fat imaging applying multislice sequences withoutsensitivityto B1 field in- homogeneities. Magn Reson Med 38:269–274

    Article  CAS  PubMed  Google Scholar 

  13. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    Article  CAS  PubMed  Google Scholar 

  14. Glover GH (1991) Multipoint Dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging 1:521–530

    Article  CAS  PubMed  Google Scholar 

  15. Reeder SB, PinedaAR, WenZetal (2005) Iterative decomposition of water and fat with echo asymme- try and least-squares estimation (IDEAL): application with fast spinecho imaging. Magn Reson Med 54:636–644

    Article  PubMed  Google Scholar 

  16. MachannJ, ThamerC, SchnoedtBet al (2006) Hepatic lipid accumulation in healthy subjects: a comparative study using spectral fat-selective MRI and volume-localized ’H-MR spec- troscopy. Magn Reson Med 55:913–917

    Article  Google Scholar 

  17. Gaeta M, Messina S, Mileto A et al (2011) Musdefat-fraction and map- ping in Duchenne muscular dystro- phy: evaluation of disease distribution and correlation with clinical assessments. Preliminary experience. Skeletal Radiol 41:955–961

    Article  PubMed  Google Scholar 

  18. LeBihan D (1995) Molecular diffusion, tissue microdynamics and mi- crostructure. NMR Biomed 8:375–386

    Article  CAS  Google Scholar 

  19. LaunFB, FritzscheKH, Kuder TA, Stieltjes B (2011) Introductiontothe basic principles and techniques of diffusion-weighted imaging. Radiologe 51:170–179

    Google Scholar 

  20. Ordidge RJ, Helpern JA, Qing ZX et al (1994) Correction of motional arti- facts in diffusion-weighted MR images using navigator echoes. Magn Reson Imaging 12:455–460

    Article  CAS  PubMed  Google Scholar 

  21. Roberts TP, Rowley HA (2003) Diffusion weighted magnetic resonan- ce imaging in stroke. Eur J Radiol 45:185–194

    Article  PubMed  Google Scholar 

  22. Charles-Edwards EM, Souza NM de (2004) Diffusion-weighted magnetic resonance imaging and its ap- plication to cancer. Cancer Imaging 13:135–143

    Google Scholar 

  23. Wolff SD, Balaban RS (1994) Magnet- izationtransfer imaging: practical aspects and clinical applications. Ra- diology 192:593–599

    Google Scholar 

  24. Edelman RR, Ahn SS, Chien D et al (1992) Improved time-of-flight MR angiography of the brain with ma- gnetization transfer contrast. Radio- logy 184(2)395–399

    Google Scholar 

  25. Welsch GH, Trattnig S, Scheffler Ket al (2008) Magnetization transfer contrast and T2 mapping in the evaluation of cartilage repairtissue with 3T MRI. J Magn Reson Imaging 28:979–986

    Article  PubMed  Google Scholar 

  26. Brown RA, Narayanan S, Arnold DL (2010) Segmentation of magnetization transfer ratio lesions for longitudinal analysis of demyelination and remyelination in multiple sclerosis. Neuroimage 66:103–109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schick, F. (2015). Bildkontraste bei statischen Aufnahmen in der klinischen Magnetresonanztomographie. In: Delorme, S., Reimer, P., Reith, W., Schäfer-Prokop, C., Schüller-Weidekamm, C., Uhl, M. (eds) Weiterbildung Radiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46785-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46785-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46784-8

  • Online ISBN: 978-3-662-46785-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics