Skip to main content

Magnetresonanztomographie (MRT) – Komponenten und Methoden

  • Living reference work entry
  • First Online:
Medizintechnik

Part of the book series: Springer Reference Technik ((SRT))

  • 2446 Accesses

Zusammenfassung

Die Magnetresonanztomographie (MRT) ist ein in der klinischen Routine etabliertes bildgebendes Verfahren, das auf den Prinzipien der Kernspinresonanz (Magnetresonanz) basiert und Schnittbilder des Körpers erzeugt. In diesem Kapitel werden die Grundprinzipien sowie die physikalisch-technischen Grundlagen der Komponenten eines MRT. Bei den Komponenten wird die Rolle der Magnetfeldstärke eines supraleitenden oder Permanentmagneten angesprochen, die Bedeutung eines leistungsfähigen Magnetfeldgradientensystems zur räumlichen Zuordnung und die Kombination von Sende- und Empfangsspulen zur Optimierung von Bildqualität und Messzeit. Zum Verständnis der Grundlagen sind nachfolgend die wichtigsten gewebespezifischen Parameter vorgestellt, die für einen potenziellen Bildkontrast verantwortlich sind. Obwohl die MRT eine extrem sichere Bildgebungsmodalität darstellt, so gibt es doch einige bekannte Gefahrenpunkte für Bedienpersonal und Patient, die zu beachten sind und denen ein eigener Abschnitt gewidmet ist.

Die Originalversion dieses Kapitels wurde revidiert: Der Herausgebername wurde korrigiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267

    Article  Google Scholar 

  • Bloch F (1946) Nuclear induction. Phys Rev 70:460–473

    Article  Google Scholar 

  • Bloch F, Hanson WW, Packard M (1946) Nuclear induction. Phys Rev 69:127 (s. auch: Purcell EM, Torrey HC, Pound RV (1964) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38)

    Article  Google Scholar 

  • Brasch RC (1983) Work in progress: methods of contrast enhancement for NMR imaging and potential applications. A subject review. Radiology 147(3):781–788

    Article  Google Scholar 

  • Bundesanzeiger 2001, Nr. 28: S 2013; Richtlinien des Bundesausschusses der Ärzte und Krankenkassen über Kriterien zur Qualitätsbeurteilung in der Kernspintomographie gemäß § 136 SGB V i.V.m. § 92 Abs. 1 SGB V (Qualitätsbeurteilungs-Richtlinie für die Kernspintomographie)

    Google Scholar 

  • Bydder GM, Pennock JM, Steiner RE, Khenia S, Payne JA, Young IR (1985) The short TI inversion recovery sequence – an approach to MR imaging of the abdomen. Magn Reson Imaging 3(3):251–254

    Article  Google Scholar 

  • Constable RT, Gore JC (1992) The loss of small objects in variable TE imaging: implications for FSE, RARE, and EPI. Magn Reson Med 28:9–24

    Article  Google Scholar 

  • Damadian RV (1971) Tumor detection by nuclear magnetic resonance. Science 171:1151–1153 (s. auch: Hollis DP, Economou JS, Parks LC, Eggleston JC, Saryan LA, Czeisler JL (1973) Nuclear magnetic resonance studies of several experimental and human malignant tumors. Cancer Res 33:2156–2160)

    Article  Google Scholar 

  • Damadian R (1974) US Patent no. 3789832. Filed 17 March 1972, awarded 5 February 1974. Apparatus and method for detecting cancer in tissue. Inventor: Raymond V. Damadian

    Google Scholar 

  • De Coene B, Hajnal JV, Gatehouse P, Longmore DB, White SJ, Oatridge A et al (1992) MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. AJNR Am J Neuroradiol 13(6):1555–1564

    Google Scholar 

  • Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    Article  Google Scholar 

  • Edelman RR, Ahn SS, Chien D, Li W, Goldmann A, Mantello M, Kramer J, Kleefield J (1992) Improved time-of-flight MR angiography of the brain with magnetization transfer contrast. Radiology 184(2):395–399

    Article  Google Scholar 

  • Edelstein WA, Glover GH, Hardy CJ, Redington RW (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3(4):604–618

    Article  Google Scholar 

  • Einheitlicher Bewertungsmaßstab (EBM) (2010) Arztgruppen-EBM, Radiologe. KBV – Kassenärztliche Bundesvereinigung, Berlin

    Google Scholar 

  • Empfehlungen der Strahlenschutzkommission (Orientierungshilfe für bildgebende Untersuchungen). BAnz. Nr. 5a vom 12.01.2010, S 0001

    Google Scholar 

  • Fermi E (1926) Zur Quantelung des einatomigen idealen Gases. Z Phys 36:902–912

    Article  MATH  Google Scholar 

  • Gadian DG, Payne JA, Bryant DJ, Young IR, Carr DH, Bydder GM (1985) Gadolinium-DTPA as a contrast agent in MR imaging – theoretical projections and practical observations. J Comput Assist Tomogr 9(2):242–251

    Article  Google Scholar 

  • Gerlach W, Stern O (1924) Über die Richtungsquantelung im Magnetfeld. Ann Phys 74:673–699 (s. auch: dies (1922) Das magnetische Moment des Silberatoms. Z Phys V9(N1):353–355)

    Article  Google Scholar 

  • Gorter CJ, Broer LJF (1942) Negative result of an attempt to observe nuclear magnetic resonance in solids. Physica (The Hague) 9:591

    Article  Google Scholar 

  • Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210

    Article  Google Scholar 

  • Grobner T (2006a) Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis. Nephrol Dial Transplant 21(4):1104–1108

    Article  Google Scholar 

  • Grobner T (2006b) Erratum for Nephrol Dial Transplant 21(4): 1104–1108. Nephrol Dial Transplant 21(6):1745

    Article  Google Scholar 

  • Grossman RI, Gomori JM, Ramer KN, Lexa FJ, Schnall MD (1994) Magnetization transfer: theory and clinical applications in neuroradiology. Radiographics 14(2):279–290

    Article  Google Scholar 

  • Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52(3):612–618

    Article  Google Scholar 

  • Haase A, Frahm J, Mathaei D et al (1986) FLASH imaging. Rapid imaging using low flip-angle pulses. J Magn Reson 67:256–266

    Google Scholar 

  • Hahn E (1999) How I stumbled across the Spin Echo. In: Third annual Lauterbur lecture, proceedings of the International Society of Magnetic Resonance in Medicine, Philadelphia

    Google Scholar 

  • Hennig J, Nauerth A, Friedburg H, Ratzel D (1984) Ein neues Schnellbildverfahren für die Kernspintomographie. Radiologe 24:579–580

    Google Scholar 

  • Hennig J, Welz AM, Schultz G, Korvink J, Liu Z, Speck O, Zaitsev M (2008) Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study. MAGMA 21(1–2):5–14

    Article  Google Scholar 

  • Knutsson L, Ståhlberg F, Wirestam R (2010) Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. MAGMA 23(1):1–21

    Article  Google Scholar 

  • Kuchel PW, Chapman BE, Bubb WA, Hansen PE, Durrant CJ, Hertzberg MP (2003) Magnetic susceptibility: solutions, emulsions, and cells. Concepts Magn Reson A 18:56–71

    Article  Google Scholar 

  • Kuhl CK, Träber F, Schild HH (2008) Whole-body high-field-strength (3.0-T) MR imaging in clinical practice. Part I. Technical considerations and clinical applications. Radiology 246(3):675–696

    Article  Google Scholar 

  • Kumar A, Welti D, Ernst RR (1975) NMR Fourier zeugmatography. J Magn Reson 18:69–83

    Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 242:190–191

    Article  Google Scholar 

  • Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions. Radiology 161:401–407

    Article  Google Scholar 

  • Mansfield P, Grannell PK (1973) NMR diffraction in solids? J Phys C 6:L422

    Article  Google Scholar 

  • Melki PS, Mulkern RV, Panych LP, Jolesz FA (1991) Comparing the FAISE method with conventional dual-echo sequences. J Magn Reson Imaging 1:319–326

    Article  Google Scholar 

  • Miyazaki M, Lee VS (2008) Nonenhanced MR angiography. Radiology 248(1):20–43

    Article  Google Scholar 

  • Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269

    Article  Google Scholar 

  • Mori S, Itoh R, Zhang J, Kaufmann WE, van Zijl PC, Solaiyappan M, Yarowsky P (2001) Diffusion tensor imaging of the developing mouse brain. Magn Reson Med 46(1):18–23

    Article  Google Scholar 

  • Moseley M, Cohen Y, Kucharczyk J, Mintorovitch J, Ssgari HS, Wendland MF, Tsuruda J, Norman D (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176:439–445

    Article  Google Scholar 

  • Niendorf HP, Felix R, Laniado M, Schörner W, Claussen C, Weinmann HJ (1985) Gadolinium-DTPA: a new contrast agent for magnetic resonance imaging. Radiat Med 3(1):7–12

    Google Scholar 

  • Nitz WR (2003) Magnetresonanztomographie – Sequenzakronyme und weitere Kürzel. Radiologe 43:745–765

    Article  Google Scholar 

  • Nitz WR, Lenhart M, Völk M, Paetzel C, Bretschneider T, Feuerbach S (1999) MRI angiography. Methods and clinical application. Radiologe 39(6):495–506

    Article  Google Scholar 

  • Norris DG (2006) Principles of magnetic resonance assessment of brain function. J Magn Reson Imaging 23:794–807

    Article  Google Scholar 

  • Odeblad E, Bhar BN, Lindström G (1956) Proton magnetic resonance of human red blood cells in heavy water exchange experiments. Arch Biochem Biophys 63:221–225

    Article  Google Scholar 

  • Ogawa S, Lee TM, Nayak AS, Glynn P (1990a) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14(1):68–78

    Article  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990b) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  Google Scholar 

  • Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64(3):803–812

    Article  Google Scholar 

  • Pauli W (1924) Entdeckung des „Kernspins“ zur Erklärung der Hyperfeinstruktur der Atomspektren. Naturwissenschaften 12

    Google Scholar 

  • Prince MR, Yucel EK, Kaufman JA, Harrison DC, Geller SC (1993) Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging 3(6):877–881

    Article  Google Scholar 

  • Prince MR, Narasimham DL, Stanley JC, Chenevert TL, Williams DM, Marx MV, Cho KJ (1995) Breath-hold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. Radiology 197(3):785–792

    Article  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Article  Google Scholar 

  • Rabi II, Zacharias JR, Millman S, Kusch P (1938) A new method of measuring nuclear magnetic moment. Phys Rev 53:318

    Article  Google Scholar 

  • Runge VM, Clanton JA, Herzer WA, Gibbs SJ, Price AC, Partain CL, James AE Jr (1984) Intravascular contrast agents suitable for magnetic resonance imaging. Radiology 153(1):171–176

    Article  Google Scholar 

  • Saito Y, Yodono H, Tarusawa K, Sasaki T, Akimura R, Kanehira J, Takahashi S, Takekawa SD (1989) MR-angiography with intravenous administration of Gd-DTPA. Nippon Igaku Hoshasen Gakkai Zasshi 49(5):688–690

    Google Scholar 

  • Schubert R (Hrsg) (2008) Indikationen zur MRT. Wissenschaftsverlag GmbH, Krefeld

    Google Scholar 

  • Shellock FG (2001) Magnetic resonance procedures: health effects and safety. CRC Press, Boca Raton

    Google Scholar 

  • Stark DD, Wittenberg J, Middleton MS, Ferrucci JT Jr (1986) Liver metastases: detection by phase-contrast MR imaging. Radiology 158(2):327–332

    Article  Google Scholar 

  • Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292

    Article  Google Scholar 

  • Suryan G (1951) Nuclear resonance in flowing liquids. Proc Indian Acad Sci 33:107–111

    Google Scholar 

  • Torrey HC (1956) Bloch equations with diffusion terms. Phys Rev 104(3):563–565

    Article  Google Scholar 

  • Vassalo G, Boltano M, Linardos J, Damadian J, Cohen JJ, Damadian RV (1996) Control of MRI system. US Patent 6,157,194, 2000

    Google Scholar 

  • Wagner HJ, Kalinowski M, Klose KJ, Alfke H (2001) The use of gadolinium chelates for X-ray digital subtraction angiography. Invest Radiol 36(5):257–265 (Erratum in: Invest Radiol 36(9):553)

    Article  Google Scholar 

  • Winkler ML, Olsen WL, Mills TC, Kaufman L (1987) Hemorrhagic and nonhemorrhagic brain lesions: evaluation with 0.35-T fast MR imaging. Radiology 165(1):203–207

    Article  Google Scholar 

  • Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10(1):135–144

    Article  Google Scholar 

Weiterführende Literatur

  • Nitz WR (2012) MRT-Guide für MTRA/RT. Thieme, Stuttgart/New York

    Google Scholar 

  • Nitz WR, Runge VM, Schmeets SH, Faulkner WH, Desai NK (2005) Praxiskurs MRT. Thieme, Stuttgart

    Google Scholar 

  • Oppelt A (Hrsg) (2005) Imaging systems for medical diagnostics. Publicis Corporate Publishing, Erlangen

    Google Scholar 

  • Reimer P, Parizel PM, Stichnoth F (2010) Clinical MR imaging: a practical approach. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Reiser MF, Semmler W, Hricak H (2008) Magnetic resonance tomography. Springer, Berlin/Heidelberg

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang R. Nitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Nitz, W.R. (2015). Magnetresonanztomographie (MRT) – Komponenten und Methoden. In: Kramme, R. (eds) Medizintechnik. Springer Reference Technik . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45538-8_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45538-8_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-662-45538-8

  • eBook Packages: Springer Referenz Technik und Informatik

Publish with us

Policies and ethics