Skip to main content

Akutes Nierenversagen und Nierenersatzverfahren

  • Living reference work entry
  • First Online:
Die Anästhesiologie

Part of the book series: Springer Reference Medizin ((SRM))

  • 966 Accesses

Zusammenfassung

Das akute Nierenversagen („acute renal failure“) tritt gehäuft bei Intensivpatienten auf und wird durch eine verminderte Organdurchblutung und eine Vielzahl von Nephrotoxinen bedingt. Die Nierenfunktion hat einen hohen prädiktiven Wert für die Prognose des gesamten Krankheitsverlaufs. Gleichzeitig moduliert die Niere eine Vielzahl von Prozessabläufen im menschlichen Organismus und ist damit an der Pathophysiologie von Krankheitsabläufen beteiligt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  1. Liangos O, Wald R, O’Bell JW et al (2006) Epidemiology and outcomes of acute renal failure in hospitalized patients: a national survey. Clin J Am Soc Nephrol 1:43–51

    Article  PubMed  Google Scholar 

  2. Bagshaw SM, Bellomo R, Devarajan P, Johnson C, Karvellas CJ, Kutsiogiannis DJ, Mehta R, Pannu N, Romanovsky A, Sheinfeld G, Taylor S, Zappiletti M, Gibey RT (2010) Akute kidney injury in critiacal illness. Can J Anaesth 57:985–998

    Article  PubMed  Google Scholar 

  3. De Mendonca A, Vincent JL, Suter PM et al (2000) Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med 26:915–921

    Article  PubMed  Google Scholar 

  4. Prakash J, Murthy AS, Vohra R, Rajak M, Mathur SK (2006) Acute renal failure in the intensive care unit. J Assoc Physicians India 54:784–788

    CAS  PubMed  Google Scholar 

  5. Uchino S, Kellum JA, Bellomo R et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818

    Article  CAS  PubMed  Google Scholar 

  6. Oppert M, Engel C, Brunkhorst FM et al (2008) Acute renal failure in patients with severe sepsis and septic shock – a significant independent risk factor for mortality: results from the german prevalence study. Nephrol Dial Transplant 23:904–909

    Article  PubMed  Google Scholar 

  7. Schrier RW, Wang W (2004) Acute renal failure and sepsis. N Engl J Med 351:159–169

    Article  CAS  PubMed  Google Scholar 

  8. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Edipidis K, Forni LG, Gomersall CD, Govil D, Honoré PM, Joannes-Boyau O, Joannidis M, Korhonen AM, Lavrentieva A, Mehta RL, Palevsky P, Roessler E, Ronco C, Uchino S, Vazquez JA, Vidal Andrade E, Webb S, Kellum JA (2015) Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 41:1411–1423

    Article  PubMed  Google Scholar 

  9. Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, Jaber BL, Acute Kidney Injury Advisory Group of the American Society of Nephrology (2013) World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol 8:1482–1493

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wing AJ, Broyer M, Brunner FP (1983) Combined report on regular dialysis and transplantation in Europe XII, 1982. Proc Eur Dial Transplant Assoc 20:64–78

    Google Scholar 

  11. Singbartl K, Kellum JA (2012) AKI in the ICU: definition, epidemiology, risk stratification, and outcomes. Kidney Int 81:819–825

    Article  CAS  PubMed  Google Scholar 

  12. Thomas ME, Blaine C, Dawnay A, Devonald MA, Ftouh S, Laing C, Latchem S, Lewington A, Milford DV, Ostermann M (2015) The definition of acute kidney injury and its use in practise. Kidney Int 2015(87):62–73

    Article  Google Scholar 

  13. Shiao CC, Wu PC, Huang TM, Lai TS, Yang WS, Wu CH, Lai CF, Wu VC, Chu TS, Wu KD, National Taiwan University Hospital Study Group on Acute Renal Failure (NSARF), The Taiwan Consortium for Acute Kidney Injury and Renal Diseases (CAKs) (2015) Long-term remote organ cosequences following acute kidney injury. Crit Care 19:438

    Article  PubMed  PubMed Central  Google Scholar 

  14. Palevsky PM (2008) Indications and timing of renal replacement therapy in acute kidney injury. Crit Care Med 36:S224–S228

    Article  PubMed  Google Scholar 

  15. Brezis M, Rosen S (1995) Hypoxia of the renal medulla – its implicationsfor disease. N Engl J Med 332:647–655

    Article  CAS  PubMed  Google Scholar 

  16. Mehta RL, Kellum JA, Shah SV et al (2007) Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P (2004) Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit Care 8:R204–R212

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bagshaw SM, Berthiaume LR, Delaney A, Bellomo R (2008) Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: a meta-analysis. Crit Care Med 36:610–617

    Article  PubMed  Google Scholar 

  19. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  20. Ostermann M, Chang RW (2007) Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med 35:1837–1843

    Article  PubMed  Google Scholar 

  21. KDIGO (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138

    Google Scholar 

  22. Feng MG, Navar LG (2010) Afferent arteriolar vasodilator effect of adenosine predominantly involves adenosine a2b receptor activation. Am J Physiol Renal Physiol 299:F310–F315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Evans RG, Gardiner BS, Smith DW, O’Connor PM (2008) Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol 295:F1259–F1270

    Article  CAS  PubMed  Google Scholar 

  24. O’Connor PM (2006) Renal oxygen delivery: matching delivery to metabolic demand. Clin Exp Pharmacol Physiol 33:961–967

    Article  PubMed  Google Scholar 

  25. Du J, Zhang L, Yang Y et al (2010) ATP depletion-induced actin rearrangement reduces cell adhesion via p38 mapk-hsp27 signaling in renal proximal tubule cells. Cell Physiol Biochem 25:501–510

    Article  CAS  PubMed  Google Scholar 

  26. Rosen S, Heyman SN (2001) Difficulties in understanding human „Acute tubular necrosis“: limited data and flawed animal models. Kidney Int 60:1220–1224

    Article  CAS  PubMed  Google Scholar 

  27. Saenz-Morales D, Escribese MM, Stamatakis K et al (2006) Requirements for proximal tubule epithelial cell detachment in response to ischemia: role of oxidative stress. Exp Cell Res 312:3711–3727

    Article  CAS  PubMed  Google Scholar 

  28. Lee YJ, Han HJ (2005) Effect of adenosine triphosphate in renal ischemic injury: involvement of nf-kappa b. J Cell Physiol 204:792–799

    Article  CAS  PubMed  Google Scholar 

  29. Lee YJ, Park SH, Jeung TO et al (2005) Effect of adenosine triphosphate on phosphate uptake in renal proximal tubule cells: involvement of PKC and p38MAPK. J Cell Physiol 205:68–76

    Article  CAS  PubMed  Google Scholar 

  30. Heyman SN, Rosenberger C, Rosen S (2011) Acute kidney injury: lessons from experimental models. Contrib Nephrol 169:286–296

    Article  PubMed  Google Scholar 

  31. Bock HA (1997) Pathogenesis of acute renal failure: new aspects. Nephron 76:130–142

    Article  CAS  PubMed  Google Scholar 

  32. Druml W (1992) Metabolic alterations in acute renal failure. Contrib Nephrol 98:59–66

    Article  CAS  PubMed  Google Scholar 

  33. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, Glass P, Lipman J, Liu B, McArthur C, McGuinness S, Rajbhandari D, Taylor CB, Webb SA, CHEST Investigators, Australian and New Zealand Intensive Care Society Clinical Trials Group (2012) Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 367:1901–1911

    Article  CAS  PubMed  Google Scholar 

  34. Scheel PJ, Liu M, Rabb H (2008) Uremic lung: new insights into a forgotten condition. Kidney Int 74:849–851

    Article  PubMed  Google Scholar 

  35. Bellomo R, Kellum JA, Ronco C (2004) Defining acute renal failure: physiological principles. Intensive Care Med 30:33–37

    Article  PubMed  Google Scholar 

  36. Ho E, Fard A, Maisel A (2010) Evolving use of biomarkers for kidney injury in acute care settings. Curr Opin Crit Care 16:399–407

    Article  PubMed  Google Scholar 

  37. Miller TR, Anderson RJ, Linas SL et al (1978) Urinary diagnostic indices in acute renal failure: a prospective study. Ann Intern Med 89:47–50

    Article  CAS  PubMed  Google Scholar 

  38. Ishani A, Nelson D, Clothier B, Schult T, Nugent S, Greer N, Slinin Y, Ensrud KE (2011) The magnitude of acute serum creatinine increase after cardiac surgery and risk ofchronic kidney diesease, peogression of kidney disease, and death. Arch Intern Med 171:226–233

    Article  PubMed  Google Scholar 

  39. Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, Chawla LS, Cruz D, Ince C, Okusa MD, ADQI 10 workgroup (2014) Potential use of biomarkers in acute kidney injury:report and summary of recommodations from the 10th acute dialysis quality initiative consensus conference. Kidney Int 85:513–521

    Article  PubMed  Google Scholar 

  40. Medić B, Rovčanin B, Basta Jovanović G, Radojević-Škodrić S, Prostran M (2015) Kidney injury molecule-1 and cardiovascular diseases: from basic sience to clinical practice. Biomed Res Int 2015:854070

    PubMed  PubMed Central  Google Scholar 

  41. Han WK, Wagener G, Zhu Y, Wang S, Lee HT (2009) Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol 4:873–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nguyen MT, Devarajan P (2008) Biomarkers for the early detection of acute kideny injury. Pediatr Nephrol 23:2151–2157

    Article  PubMed  Google Scholar 

  43. Lisowska-Myjak B (2010) Serum and urinary biomarkers of acute kidney injury. Blood Purif 29:357–365

    Article  CAS  PubMed  Google Scholar 

  44. Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, de Jong PE (2004) Factors influencing serum Cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 65:1416–1421

    Article  CAS  PubMed  Google Scholar 

  45. Herget-Rosenthal S, Marggraf G, Husing J et al (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66:1115–1122

    Article  CAS  PubMed  Google Scholar 

  46. Dalboni MA, Beraldo Dde O, Quinto BM, Blaya R, Narciso R, Oliveira M, Monte JC, Durão Mde S, Cendoroglo M, Pavão OF, Batista MC (2013) Cystatin C at admission in the intensive care unit predicts mortality among elderly patients. ISRN Nephrol 24:673795

    Google Scholar 

  47. Herget-Rosenthal S (2005) One step forward in the early detection of acute renal failure. Lancet 365:1205–1206

    Article  PubMed  Google Scholar 

  48. Nickolas TL, Schmidt-Ott KM, Canetta P, Forster C, Singer E, Sise M, Elger A, Maarouf O, Sola-Del Valle DA, O’Rourke M, Sherman E, Lee P, Geara A, Imus P, Guddati A, Polland A, Rahman W, Elitok S, Malik N, Giglio J, El-Sayegh S, Devarajan P, Hebbar S, Saggi SJ, Hahn B, Kettritz R, Luft FC, Barasch J (2012) Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol 59:246–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Haase M, Haase-Fielitz A, Bellomo R, Mertens PR (2012) Neutrophil gelatinase-associated lipocalin as a marker of acute renal disease. Curr Opin Hematol 18:11–18

    Article  Google Scholar 

  50. Haase M, Devarajan P, Haase-Fielitz A et al (2011) The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury a multicenter pooled analysis of prospective studies. J Am Coll Cardiol 57:1752–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Soto K, Papoila AL, Coelho S, Bennett M, Ma Q, Rodrigues B, Fidalgo P, Frade F, Devarajan P (2013) Plasma NGAL for the diagnosis of AKI in patiens admitted from the emergency department setting. Clin J Am Soc Nephrol 8:2053–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL (2005) Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 16:3046–3052

    Article  CAS  PubMed  Google Scholar 

  53. Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, Bihorac A, Birkhahn R, Cely CM, Chawla LS, Davison DL, Feldkamp T, Forni LG, Gong MN, Gunnerson KJ, Haase M, Hackett J, Honore PM, Hoste EA, Joannes-Boyau O, Joannidis M, Kim P, Koyner JL, Laskowitz DT, Lissauer ME, Marx G, McCullough PA, Mullaney S, Ostermann M, Rimmelé T, Shapiro NI, Shaw AD, Shi J, Sprague AM, Vincent JL, Vinsonneau C, Wagner L, Walker MG, Wilkerson RG, Zacharowski K, Kellum JA (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17:R25

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gunnerson KJ, Shaw AD, Chawla LS, Bihorac A, Al-Khafaji A, Kashani K, Lissauer M, Shi J, Walker MG, Kellum JA, Sapphire Topaz investigators (2016) TIMP2•IGFBP7 biomarker panel accurately predicts acute kidney injury in high-risk surgical patients. J Trauma Acute Care Surg 80:243–249

    Article  CAS  PubMed  Google Scholar 

  55. Anon, Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin (DIVI) (2007) Leitlinie (Nr. 040/004) Akutes Nierenversagen. www.awmf-online.de

  56. Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R (2010) Fluid balance and acute kidney injury. Nat Rev Nephrol 6:107–115

    Article  PubMed  Google Scholar 

  57. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Åneman A, Madsen KR, Møller MH, Elkjær JM, Poulsen LM, Bendtsen A, Winding R, Steensen M, Berezowicz P, Søe-Jensen P, Bestle M, Strand K, Wiis J, White JO, Thornberg KJ, Quist L, Nielsen J, Andersen LH, Holst LB, Thormar K, Kjældgaard AL, Fabritius ML, Mondrup F, Pott FC, Møller TP, Winkel P, Wetterslev J, 6S Trial Group, Scandinavian Critical Care Trials Group (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367:124–134

    Article  CAS  PubMed  Google Scholar 

  58. Reinhart K, Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Deufel T, Hartog C, Gerlach H, Stüber F, Volk HD, Quintel M, Loeffler M, Deutsche Studiengruppe Kompetenznetzwerk Sepsis (SepNet) (2008) Study protocol of the VISEP study. Response of the SepNet study group. Anaesthesist 57:723–728

    Article  CAS  PubMed  Google Scholar 

  59. Sadat U, Usman A, Boyle JR, Hayes PD, Solomon RJ (2015) Contrast medium-induced acute kindey injury. Cardiorenal Med 5:219–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lauschke A, Teichgraber UK, Frei U, Eckardt KU (2006) Low-dose dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int 69:1669–1674

    Article  CAS  PubMed  Google Scholar 

  61. Patel NN, Rogers CA, Angelini GD, Murphy GJ (2011) Pharmacological therapies for the prevention of acute kidney injury following cardiac surgery: a systematic review. Heart Fail Rev 16:553–567 (Epub vor Druck)

    Article  CAS  PubMed  Google Scholar 

  62. Angeloni E, Melina G, Roscitano A, Refice S, Capuano F, Comito C, Benedetto U, Sinatra R (2013) Perioperative administration of enoximone and renal function after cardiac surgery: a propensity-matched analysis. Int J Cardiol 167:1961–1966

    Article  PubMed  Google Scholar 

  63. Gist KM, Goldstein SL, Joy MS, Vinks AA (2016) Milrinone dosing issues in critically ill children with kidney injury: a review. J Cardiovasc Pharmacol 67:175–181

    Article  CAS  PubMed  Google Scholar 

  64. Niu ZZ, Wu SM, Sun WY, Hou WM, Chi YF (2014) Perioperative levosimendan therapy is associated with a lower incidence of acute kidney injury after cardiac surgery: a meta-analysis. J Cardiovasc Pharmacol 63:107–112

    Article  CAS  PubMed  Google Scholar 

  65. Karajala V, Mansour W, Kellum JA (2009) Diuretics in acute kidney injury. Minerva Anestesiol 75:251–257

    CAS  PubMed  Google Scholar 

  66. Lewis J, Salem MM, Chertow GM et al (2000) Atrial natriuretic factor in oliguric acute renal failure. Anaritide acute renal failure study group. Am J Kidney Dis 36:767–774

    Article  CAS  PubMed  Google Scholar 

  67. Herrera GA (1994) Myoglobin and the kidney: an overview. Ultrastruct Pathol 18:113–117

    Article  CAS  PubMed  Google Scholar 

  68. Briguori C, Quintavalle C, De Micco F, Condorelli G (2011) Nephrotoxicity of contrast media and protective effects of acetylcysteine. Arch Toxicol 85:165–173

    Article  CAS  PubMed  Google Scholar 

  69. Marenzi G, Assanelli E, Marana I et al (2006) N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. N Engl J Med 354:2773–2782

    Article  CAS  PubMed  Google Scholar 

  70. Trivedi H, Daram S, Szabo A, Bartorelli AL, Marenzi G (2009) High-dose N-acetylcysteine for the prevention of contrast-induced nephropathy. Am J Med 122:874.e9–874.e15

    Article  Google Scholar 

  71. Kelly AM, Dwamena B, Cronin P, Bernstein SJ, Carlos RC (2008) Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy. Ann Intern Med 148:284–294

    Article  PubMed  Google Scholar 

  72. Venkataraman R (2008) Can we prevent acute kidney injury? Crit Care Med 36:S166–S171

    Article  PubMed  Google Scholar 

  73. Palevsky PM, Liu KD, Brophy PD, Chawla LS, Parikh CR, Thakar CV, Tolwani AJ, Waikar SS, Weisbord SD (2013) KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis 61:649–672

    Article  PubMed  Google Scholar 

  74. Druml W, Contzen B, Joannidis M, Kierdorf H, Kuhlmann MK, das DGEM Steering Comitee (2015) S1 Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin Enterale und parenterale Ernährung bei Patienten mit Niereninsuffizienz. Aktuel Ernahrungsmed 40:21–37

    Article  Google Scholar 

  75. Rabindranath K, Adams J, Macleod AM, Muirhead N (2007) Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev (3):CD003773

    Google Scholar 

  76. Liu C, Mao Z, Kang H, Hu J, Zhou F (2016) Regional citrate versus heparin anticoagulation for continuous renal replacement therapy in critically ill patients: a meta-analysis with trial sequential analysis of randomized controlled trials. Crit Care 20:144

    Article  PubMed  PubMed Central  Google Scholar 

  77. Singer RF, Williams O, Mercado C, Chen B, Talaulikar G, Walters G, Roberts DM (2016) Regional citrate anticoagulation in hemodialysis: an observational study of safety, efficacy, and effect on calcium balance during routine care. Can J Kidney Health Dis 3:22

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tolwani A, Wille KM (2012) Regional citrate anticoagulation for continuous renal replacement therapy: the better alternative? Am J Kidney Dis 59:745–747

    Article  CAS  PubMed  Google Scholar 

  79. Schultheiss C, Saugel B, Philip V, Thies P, Noe S, Mayr U, Haller B, Einwachter H, Schmid RM, Huber W (2012) Continuous venovenous hemodialysis with regional citrate anticoagulation in patients with liver failure: a prospective observational study. Crit Care 16:R162

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ratanarat R, Brendolan A, Ricci Z et al (2006) Pulse high volume filtration in critical ill patients: a new approach for patients with septic shock. Semin Dial 19:69–74

    Article  PubMed  Google Scholar 

  81. Kramer P, Wigger W, Rieger J, Matthaei D, Scheler F (1977) Arteriovenous hemofiltration: a new and simple method for treatment of overhydrated patients resistent to diuretics. Klin Wochenschr 55:1121

    Article  CAS  PubMed  Google Scholar 

  82. Ponikvar R (2003) Blood purification in the intensive care unit. Nephrol Dial Transplant 18(Suppl 5):v63–v67

    Article  PubMed  Google Scholar 

  83. Geronemus R, Schneider N (1984) Continuous arteriovenous hemodialysis: a new modality for treatment of acute renal failure. SAIO Trans 30:610

    CAS  Google Scholar 

  84. Ronco C, Bragantini L, Brendolan A (1985) Arteriovenous hemodiafiltration (AVHDF) combined with continuous arteriovenous hemofiltration (CAVH). Trans Am Soc Artif Intern Organs 31:349–353

    CAS  PubMed  Google Scholar 

  85. Bingold TM, Scheller B, Zwissler B, Wissing H (2007) Renal replacement therapy in the intensive care unit: current aspects. Anaesthesist 56:1105–1114

    Article  CAS  PubMed  Google Scholar 

  86. Lonnemann G, Floege J, Kliem V, Brunkhorst R, Koch KM (2000) Extended daily veno-venous high-flux haemodialysis in patients with acute renal failure and multiple organ dysfunction syndrome using a single path batch dialysis system. Nephrol Dial Transplant 15:1189–1193

    Article  CAS  PubMed  Google Scholar 

  87. Zhang L, Yang J, Eastwood GM, Zhu G, Tanaka A, Bellomo R (2015) Extended daily dialysis versus continuous renal replacement therapy for acute kidney injury: a meta-analysis. Am J Kidney Dis 66:322–330

    Article  PubMed  Google Scholar 

  88. Pannu N, Klarenbach S, Wiebe N, Manns B, Tonelli M, Alberta Kidney Disease Network (2008) Renal replacement therapy in patients with acute renal failure: a systematic review. JAMA 299:793–805

    Article  CAS  PubMed  Google Scholar 

  89. Karvellas CJ, Farhat MR, Sajjad I et al (2011) A comparison of early versus late initiation of renal replacement theapy in critical ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care 15:R72

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lin ZH, Zuo L (2015) When to initiate renal replacement therapy: the trend of dialysis initiation. World J Nephrol 4:521–527

    PubMed  PubMed Central  Google Scholar 

  91. Slinin Y, Greer N, Ishani A, MacDonald R, Olson C, Rutks I, Wilt TJ (2015) Timing of dialysis initiation, duration and frequency of hemodialysis sessions, and membrane flux: a systematic review for a KDOQI clinical practice guideline. Am J Kidney Dis 66:823–836

    Article  PubMed  Google Scholar 

  92. Wald R, Bagshaw SM (2014) The timing of renal replacement therapy initiation in acute kidney injury: is earlier truly better? Crit Care Med 42:1933–1934

    Article  PubMed  Google Scholar 

  93. Ronco C, Bellomo R, Homel P et al (2000) Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 356:26–30

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Kaufmann .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 © Springer-Verlag GmbH Deutschland

About this entry

Cite this entry

Kaufmann, I., Voit, A. (2016). Akutes Nierenversagen und Nierenersatzverfahren. In: Rossaint, R., Werner, C., Zwißler, B. (eds) Die Anästhesiologie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45539-5_137-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45539-5_137-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45539-5

  • Online ISBN: 978-3-662-45539-5

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics