Skip to main content

Development of Heart Failure and the Role of the Autonomic Nervous System of the Heart

  • Chapter
  • First Online:
Autonomic Innervation of the Heart

Abstract

Heart failure is a clinical syndrome that develops in response of a cardiac insult, resulting in a decline of cardiac performance. Several neurohormonal mechanisms are activated in response to the underlying myocardial dysfunction, including the autonomic nervous system. Patients with heart failure are characterized by an abnormally activated sympathetic and altered parasympathetic tone, with also attenuated cardiovascular reflexes and a maladaptive downregulation of adrenergic nerve terminals. During exercise, an inappropriate rise in ventilation occurs as well as an enhanced peripheral vasoconstriction in order to preserve an adequate blood pressure level. Although the activation of these systems can initially compensate for the depressed myocardial function, their long-term activation results in a further impairment of cardiac function leading to progression of heart failure with fatigue and dyspnea being major barriers for exercise tolerance. Medication, in particular beta-blocker and ACE-inhibitor therapy, influences both the sympathetic and parasympathetic tone. The sympathetic tone may also be modulated by cardiac resynchronization therapy whereas vagus nerve stimulation may increase the parasympathetic activity. Through its impact on the periphery, physical exercise is also able to influence both the sympathetic and parasympathetic nervous system..

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[123I]-MIBG:

Iodine-123 metaiodobenzylguanidine

ANS:

Autonomic nervous system

CNS:

Central nervous system

CO:

Cardiac output

CRT:

Cardiac resynchronization therapy

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

PSNS:

Parasympathetic nervous system

RAAS:

Renin-angiotensin-aldosterone system

SNS:

Sympathetic nervous system

References

  • Adamopoulos S, Ponikowski P, Cerquetani E et al (1995) Circadian pattern of heart rate variability in chronic heart failure patients. Effects of physical training. Eur Heart J 16:1380–1386

    CAS  PubMed  Google Scholar 

  • Adamson PB, Gilbert EM (2006) Reducing the risk of sudden death in heart failure with beta-blockers. J Card Fail 12:734–746

    Article  CAS  PubMed  Google Scholar 

  • Augustyniak RA, Collins HL, Ansorge EJ et al (2001) Severe exercise alters the strength and mechanisms of the muscle metaboreflex. Am J Physiol Heart Circ Physiol 280:H1645–H1652

    CAS  PubMed  Google Scholar 

  • Bibevski S, Dunlap ME (2011) Evidence for impaired vagus nerve activity in heart failure. Heart Fail Rev 16:129–135

    Article  PubMed  Google Scholar 

  • Binkley PF, Nunziata E, Haas GJ et al (1991) Parasympathetic withdrawal is an integral component of autonomic imbalance in congestive heart failure: demonstration in human subjects and verification in a paced canine model of ventricular failure. J Am Coll Cardiol 18:464–472

    Article  CAS  PubMed  Google Scholar 

  • Brodde OE, Bruck H, Leineweber K et al (2001) Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol 96:528–538

    Article  CAS  PubMed  Google Scholar 

  • Buch AN, Coote JH, Townend JN (2002) Mortality, cardiac vagal control and physical training–what’s the link? Exp Physiol 87:423–435

    Article  PubMed  Google Scholar 

  • Caldwell JH, Link JM, Levy WC et al (2008) Evidence for pre- to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med 49:234–241

    Article  PubMed  Google Scholar 

  • Cha YM, Chareonthaitawee P, Dong YX et al (2011) Cardiac sympathetic reserve and response to cardiac resynchronization therapy. Circ Heart Fail 4:339–344

    Article  PubMed  Google Scholar 

  • Chapleau MW, Sabharwal R (2011) Methods of assessing vagus nerve activity and reflexes. Heart Fail Rev 16:109–127

    Article  PubMed  Google Scholar 

  • Choudhury L, Rosen SD, Lefroy DC et al (1996) Myocardial beta adrenoceptor density in primary and secondary left ventricular hypertrophy. Eur Heart J 17:1703–1709

    Article  CAS  PubMed  Google Scholar 

  • Chua TP, Clark AL, Amadi AA et al (1996) Relation between chemosensitivity and the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol 27:650–657

    Article  CAS  PubMed  Google Scholar 

  • Clark AL, Cleland JG (2000) The control of adrenergic function in heart failure: therapeutic intervention. Heart Fail Rev 5:101–114

    Article  CAS  PubMed  Google Scholar 

  • Clark AL, Poole-Wilson PA, Coats AJ (1996) Exercise limitation in chronic heart failure: central role of the periphery. J Am Coll Cardiol 28:1092–1102

    Article  CAS  PubMed  Google Scholar 

  • Coats AJ, Adamopoulos S, Radaelli A et al (1992) Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85:2119–2131

    Article  CAS  PubMed  Google Scholar 

  • Cohn JN, Archibald DG, Ziesche S et al (1986) Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med 314:1547–1552

    Article  CAS  PubMed  Google Scholar 

  • Cohn JN, Pfeffer MA, Rouleau J et al (2003) Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON). Eur J Heart Fail 5:659–667

    Article  CAS  PubMed  Google Scholar 

  • Crisafulli A, Scott AC, Wensel R et al (2003) Muscle metaboreflex-induced increases in stroke volume. Med Sci Sports Exerc 35:221–228; discussion 229

    Article  PubMed  Google Scholar 

  • Crisafulli A, Salis E, Pittau G et al (2006) Modulation of cardiac contractility by muscle metaboreflex following efforts of different intensities in humans. Am J Physiol Heart Circ Physiol 291:H3035–H3042

    Article  CAS  PubMed  Google Scholar 

  • Dampney RA, Coleman MJ, Fontes MA et al (2002) Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol 29:261–268

    Article  CAS  PubMed  Google Scholar 

  • De Ferrari GM, Schwartz PJ (2011) Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Fail Rev 16:195–203

    Article  PubMed  Google Scholar 

  • Decherchi P, Dousset E, Jammes Y (2007) Respiratory and cardiovascular responses evoked by tibialis anterior muscle afferent fibers in rats. Exp Brain Res 183:299–312

    Article  PubMed  Google Scholar 

  • Desai MY, Watanabe MA, Laddu AA et al (2011) Pharmacologic modulation of parasympathetic activity in heart failure. Heart Fail Rev 16:179–193

    Article  CAS  PubMed  Google Scholar 

  • Eckberg DL, Drabinsky M, Braunwald E (1971) Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med 285:877–883

    Article  CAS  PubMed  Google Scholar 

  • Feldman DS, Carnes CA, Abraham WT et al (2005) Mechanisms of disease: beta-adrenergic receptors–alterations in signal transduction and pharmacogenomics in heart failure. Nat Clin Pract Cardiovasc Med 2:475–483

    Article  CAS  PubMed  Google Scholar 

  • Flynn KE, Pina IL, Whellan DJ et al (2009) Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 301:1451–1459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gademan MG, Swenne CA, Verwey HF et al (2007) Effect of exercise training on autonomic derangement and neurohumoral activation in chronic heart failure. J Card Fail 13:294–303

    Article  PubMed  Google Scholar 

  • Goldsmith RL, Bigger JT, Bloomfield DM et al (1997) Long-term carvedilol therapy increases parasympathetic nervous system activity in chronic congestive heart failure. Am J Cardiol 80:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Hambrecht R, Niebauer J, Fiehn E et al (1995) Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol 25:1239–1249

    Article  CAS  PubMed  Google Scholar 

  • Hambrecht R, Fiehn E, Yu J et al (1997) Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol 29:1067–1073

    Article  CAS  PubMed  Google Scholar 

  • Hambrecht R, Fiehn E, Weigl C et al (1998) Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98:2709–2715

    Article  CAS  PubMed  Google Scholar 

  • Hambrecht R, Wolf A, Gielen S et al (2000) Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med 342:454–460

    Article  CAS  PubMed  Google Scholar 

  • Hammond RL, Augustyniak RA, Rossi NF et al (2000) Heart failure alters the strength and mechanisms of the muscle metaboreflex. Am J Physiol Heart Circ Physiol 278:H818–H828

    CAS  PubMed  Google Scholar 

  • Hauptman PJ, Schwartz PJ, Gold MR et al (2012) Rationale and study design of the increase of vagal tone in heart failure study: INOVATE-HF. Am Heart J 163:954–962

    Article  PubMed  Google Scholar 

  • Heistad D, Abboud FM, Mark AL et al (1975) Effect of baroreceptor activity on ventilatory response to chemoreceptor stimulation. J Appl Physiol 39:411–416

    CAS  PubMed  Google Scholar 

  • Himura Y, Felten SY, Kashiki M et al (1993) Cardiac noradrenergic nerve terminal abnormalities in dogs with experimental congestive heart failure. Circulation 88:1299–1309

    Article  CAS  PubMed  Google Scholar 

  • Iellamo F, Pizzinelli P, Massaro M et al (1999) Muscle metaboreflex contribution to sinus node regulation during static exercise: insights from spectral analysis of heart rate variability. Circulation 100:27–32

    Article  CAS  PubMed  Google Scholar 

  • Iellamo F, Manzi V, Caminiti G et al (2011) Dose–response relationship of baroreflex sensitivity and heart rate variability to individually-tailored exercise training in patients with heart failure. Int J Cardiol 166:334–339

    Article  PubMed  Google Scholar 

  • Katona PG, Lipson D, Dauchot PJ (1977) Opposing central and peripheral effects of atropine on parasympathetic cardiac control. Am J Physiol 232:H146–H151

    CAS  PubMed  Google Scholar 

  • Kaufman MP, Longhurst JC, Rybicki KJ et al (1983) Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. J Appl Physiol Respir Environ Exerc Physiol 55:105–112

    CAS  PubMed  Google Scholar 

  • Khan MH, Sinoway LI (2000) Muscle reflex control of sympathetic nerve activity in heart failure: the role of exercise conditioning. Heart Fail Rev 5:87–100

    Article  CAS  PubMed  Google Scholar 

  • Kiilavuori K, Toivonen L, Naveri H et al (1995) Reversal of autonomic derangements by physical training in chronic heart failure assessed by heart rate variability. Eur Heart J 16:490–495

    CAS  PubMed  Google Scholar 

  • Kim JK, Sala-Mercado JA, Hammond RL et al (2005a) Attenuated arterial baroreflex buffering of muscle metaboreflex in heart failure. Am J Physiol Heart Circ Physiol 289:H2416–H2423

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Sala-Mercado JA, Rodriguez J et al (2005b) Arterial baroreflex alters strength and mechanisms of muscle metaboreflex during dynamic exercise. Am J Physiol Heart Circ Physiol 288:H1374–H1380

    Article  CAS  PubMed  Google Scholar 

  • Kingwell BA (2000) Nitric oxide as a metabolic regulator during exercise: effects of training in health and disease. Clin Exp Pharmacol Physiol 27:239–250

    Article  CAS  PubMed  Google Scholar 

  • Kinugawa T, Dibner-Dunlap ME (1995) Altered vagal and sympathetic control of heart rate in left ventricular dysfunction and heart failure. Am J Physiol 268:R310–R316

    CAS  PubMed  Google Scholar 

  • Kleiger RE, Miller JP, Bigger JT et al (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256–262

    Article  CAS  PubMed  Google Scholar 

  • Kougias P, Weakley SM, Yao Q et al (2010) Arterial baroreceptors in the management of systemic hypertension. Med Sci Monit 16:RA1–RA8

    PubMed Central  PubMed  Google Scholar 

  • Kubo T, Parker JD, Azevedo ER et al (2005) Vagal heart rate responses to chronic beta-blockade in human heart failure relate to cardiac norepinephrine spillover. Eur J Heart Fail 7:878–881

    Article  CAS  PubMed  Google Scholar 

  • La Rovere MT, Bigger JT Jr, Marcus FI et al (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 351:478–484

    Article  PubMed  Google Scholar 

  • Larsen AI, Gjesdal K, Hall C et al (2004) Effect of exercise training in patients with heart failure: a pilot study on autonomic balance assessed by heart rate variability. Eur J Cardiovasc Prev Rehabil 11:162–167

    Article  PubMed  Google Scholar 

  • Leineweber K, Wangemann T, Giessler C et al (2002) Age-dependent changes of cardiac neuronal noradrenaline reuptake transporter (uptake1) in the human heart. J Am Coll Cardiol 40:1459

    Article  CAS  PubMed  Google Scholar 

  • Lewis ME, Al-Khalidi AH, Bonser RS et al (2001) Vagus nerve stimulation decreases left ventricular contractility in vivo in the human and pig heart. J Physiol 534:547–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Zheng C, Sato T et al (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109:120–124

    Article  PubMed  Google Scholar 

  • Li YL, Ding Y, Agnew C et al (2008) Exercise training improves peripheral chemoreflex function in heart failure rabbits. J Appl Physiol 105:782–790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang CS, Fan TH, Sullebarger JT et al (1989) Decreased adrenergic neuronal uptake activity in experimental right heart failure. A chamber-specific contributor to beta-adrenoceptor downregulation. J Clin Invest 84:1267–1275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lykidis CK, Kumar P, Balanos GM (2009) The respiratory responses to the combined activation of the muscle metaboreflex and the ventilatory chemoreflex. Adv Exp Med Biol 648:281–287

    Article  CAS  PubMed  Google Scholar 

  • Malfatto G, Branzi G, Riva B et al (2002) Recovery of cardiac autonomic responsiveness with low-intensity physical training in patients with chronic heart failure. Eur J Heart Fail 4:159–166

    Article  PubMed  Google Scholar 

  • Malliani A, Pagani M, Pizzinelli P et al (1983) Cardiovascular reflexes mediated by sympathetic afferent fibers. J Auton Nerv Syst 7:295–301

    Article  CAS  PubMed  Google Scholar 

  • Mancini DM, Coyle E, Coggan A et al (1989) Contribution of intrinsic skeletal muscle changes to 31P NMR skeletal muscle metabolic abnormalities in patients with chronic heart failure. Circulation 80:1338–1346

    Article  CAS  PubMed  Google Scholar 

  • Mann DL, Bristow MR (2005) Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 111:2837–2849

    Article  PubMed  Google Scholar 

  • McAlister FA, Wiebe N, Ezekowitz JA et al (2009) Meta-analysis: beta blocker dose, heart rate reduction and death in patients with heart failure. Ann Intern Med 150:784–794

    Article  PubMed  Google Scholar 

  • McMillan DE (2002) Interpreting heart rate variability sleep/wake patterns in cardiac patients. J Cardiovasc Nurs 17:69–81

    Article  PubMed  Google Scholar 

  • McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 14:803–869

    Article  CAS  PubMed  Google Scholar 

  • Merlet P, Delforge J, Syrota A et al (1993) Positron emission tomography with 11C CGP-12177 to assess beta-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation 87:1169–1178

    Article  CAS  PubMed  Google Scholar 

  • Mousa TM, Liu D, Cornish KG et al (2008) Exercise training enhances baroreflex sensitivity by an angiotensin II-dependent mechanism in chronic heart failure. J Appl Physiol 104:616–624

    Article  CAS  PubMed  Google Scholar 

  • Murad K, Brubaker PH, Fitzgerald DM et al (2012) Exercise training improves heart rate variability in older patients with heart failure: a randomized, controlled, single-blinded trial. Congest Heart Fail 18:192–197

    Article  PubMed Central  PubMed  Google Scholar 

  • Nihei M, Lee JK, Honjo H et al (2005) Decreased vagal control over heart rate in rats with right-sided congestive heart failure: downregulation of neuronal nitric oxide synthase. Circ J 69:493–499

    Article  CAS  PubMed  Google Scholar 

  • Nishiyasu T, Tan N, Morimoto K et al (1994) Enhancement of parasympathetic cardiac activity during activation of muscle metaboreflex in humans. J Appl Physiol 77:2778–2783

    CAS  PubMed  Google Scholar 

  • Nolan J, Flapan AD, Capewell S et al (1992) Decreased cardiac parasympathetic activity in chronic heart failure and its relation to left ventricular function. Br Heart J 67:482–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Connor CM, Whellan DJ, Lee KL et al (2009) Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 301:1439–1450

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Leary DS (2006) Altered reflex cardiovascular control during exercise in heart failure: animal studies. Exp Physiol 91:73–77

    Article  PubMed  Google Scholar 

  • Olshansky B, Sabbah HN, Hauptman PJ et al (2008) Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 118:863–871

    Article  PubMed  Google Scholar 

  • Parati G, Esler M (2012) The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J 33:1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Piepoli M, Clark AL, Coats AJ (1995) Muscle metaboreceptors in hemodynamic, autonomic, and ventilatory responses to exercise in men. Am J Physiol 269:H1428–H1436

    CAS  PubMed  Google Scholar 

  • Piepoli M, Clark AL, Volterrani M et al (1996) Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure: effects of physical training. Circulation 93:940–952

    Article  CAS  PubMed  Google Scholar 

  • Piepoli M, Ponikowski P, Clark AL et al (1999) A neural link to explain the “muscle hypothesis” of exercise intolerance in chronic heart failure. Am Heart J 137:1050–1056

    Article  CAS  PubMed  Google Scholar 

  • Ponikowski P, Chua TP, Piepoli M et al (1997) Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure. Circulation 96:2586–2594

    Article  CAS  PubMed  Google Scholar 

  • Ponikowski P, Chua TP, Anker SD et al (2001a) Peripheral chemoreceptor hypersensitivity: an ominous sign in patients with chronic heart failure. Circulation 104:544–549

    Article  CAS  PubMed  Google Scholar 

  • Ponikowski P, Francis DP, Piepoli MF et al (2001b) Enhanced ventilatory response to exercise in patients with chronic heart failure and preserved exercise tolerance: marker of abnormal cardiorespiratory reflex control and predictor of poor prognosis. Circulation 103:967–972

    Article  CAS  PubMed  Google Scholar 

  • Radaelli A, Coats AJ, Leuzzi S et al (1996) Physical training enhances sympathetic and parasympathetic control of heart rate and peripheral vessels in chronic heart failure. Clin Sci (Lond) 91(Suppl):92–94

    Google Scholar 

  • Roveda F, Middlekauff HR, Rondon MU et al (2003) The effects of exercise training on sympathetic neural activation in advanced heart failure: a randomized controlled trial. J Am Coll Cardiol 42:854–860

    Article  PubMed  Google Scholar 

  • Sabbah HN, Wang M, Jiang A et al (2010) Right vagus nerve stimulation improves left ventricular systolic function in dogs with heart failure. J Am Coll Cardiol 55:A16–E151

    Google Scholar 

  • Schaufelberger M, Eriksson BO, Grimby G et al (1997) Skeletal muscle alterations in patients with chronic heart failure. Eur Heart J 18:971–980

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, De Ferrari GM, Sanzo A et al (2008) Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur J Heart Fail 10:884–891

    Article  PubMed  Google Scholar 

  • Scott AC, Francis DP, Davies LC et al (2000) Contribution of skeletal muscle ‘ergoreceptors’ in the human leg to respiratory control in chronic heart failure. J Physiol 529:863–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Somers VK, Mark AL, Abboud FM (1991) Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest 87:1953–1957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spyrou N, Rosen SD, Fath-Ordoubadi F et al (2002) Myocardial beta-adrenoceptor density one month after acute myocardial infarction predicts left ventricular volumes at six months. J Am Coll Cardiol 40:1216–1224

    Article  CAS  PubMed  Google Scholar 

  • Sullivan MJ, Higginbotham MB, Cobb FR (1988) Exercise training in patients with severe left ventricular dysfunction. Hemodynamic and metabolic effects. Circulation 78:506–515

    Article  CAS  PubMed  Google Scholar 

  • Townend JN, al-Ani M, West JN et al (1995) Modulation of cardiac autonomic control in humans by angiotensin II. Hypertension 25:1270–1275

    Article  CAS  PubMed  Google Scholar 

  • Triposkiadis F, Karayannis G, Giamouzis G et al (2009) The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 54:1747–1762

    Article  CAS  PubMed  Google Scholar 

  • Ungerer M, Bohm M, Elce JS et al (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87:454–463

    Article  CAS  PubMed  Google Scholar 

  • Van Stee EW (1978) Autonomic innervation of the heart. Environ Health Perspect 26:151–158

    Article  PubMed Central  PubMed  Google Scholar 

  • Vescovo G, Dalla Libera L (2006) Skeletal muscle apoptosis in experimental heart failure: the only link between inflammation and skeletal muscle wastage? Curr Opin Clin Nutr Metab Care 9:416–422

    Article  CAS  PubMed  Google Scholar 

  • Vescovo G, Volterrani M, Zennaro R et al (2000) Apoptosis in the skeletal muscle of patients with heart failure: investigation of clinical and biochemical changes. Heart 84:431–437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang HJ, Pan YX, Wang WZ et al (2010) Exercise training prevents the exaggerated exercise pressor reflex in rats with chronic heart failure. J Appl Physiol 108:1365–1375

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang HJ, Zucker ICH, Wang W (2012) Muscle reflex in heart failure: the role of exercise training. Front Physiol. doi:10.3389/fphys.2012.00398

    Google Scholar 

  • Xu XL, Zang WJ, Lu J et al (2006) Effects of carvedilol on M2 receptors and cholinesterase-positive nerves in adriamycin-induced rat failing heart. Auton Neurosci 130:6–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Popovic ZB, Bibevski S et al (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2:692–699

    Article  CAS  PubMed  Google Scholar 

  • Zipes DP (2008) Heart-brain interactions in cardiac arrhythmias: role of the autonomic nervous system. Cleve Clin J Med 75(Suppl 2):S94–S96

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pardaens MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pardaens, S., De Sutter, J. (2015). Development of Heart Failure and the Role of the Autonomic Nervous System of the Heart. In: Slart, R., Tio, R., Elsinga, P., Schwaiger, M. (eds) Autonomic Innervation of the Heart. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45074-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45074-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45073-4

  • Online ISBN: 978-3-662-45074-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics