Skip to main content

Preclinical Evaluations of Cardiac Sympathetic Innervation Radiotracers

  • Chapter
  • First Online:
Autonomic Innervation of the Heart

Abstract

Preclinical evaluations of radiotracers designed for imaging cardiac sympathetic innervation have played a key role in the development of this branch of nuclear cardiology. In this chapter, many of the experimental approaches used to characterize the neuronal uptake and retention mechanisms of sympathetic nerve radiotracers are reviewed, from in vitro assays to in vivo imaging studies in animal models. Data from these studies have been critically important in the development of the most optimal radiotracers for cardiac innervation imaging studies in human subjects. They have also provided invaluable insights into the underlying neuronal retention mechanisms of each radiotracer, which are essential to understanding observed changes in the myocardial retention and kinetics of the radiotracer in heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[11C]-D2-PHEN:

[11C]-(–)-α,α-dideutero-phenylephrine

[11C]-EPI:

[11C]-(–)-epinephrine

[11C]-GMO:

N-[11C]-guanyl-(–)-meta-octopamine

[11C]-mHED:

[11C]-meta-(–)-hydroxyephedrine

[11C]-MHPG:

[11C]-meta-hydroxyphenethylguanidine

[11C]-PHEN:

[11C]-(–)-phenylephrine

[11C]-PHPG:

[11C]-para-hydroxyphenethylguanidine

[123I]-MIBG:

[123I]-metaiodobenzylguanidine

[131I]-RIBA:

[131I]-o-iodobenzyltrimethylammonium iodide

[18F]-4F-MHPG:

4-[18F]-fluoro-meta-hydroxyphenethylguanidine

[3H]-NE:

[3H]-labeled norepinephrine

6-OHDA:

6-hydroxydopamine

C6-hNET:

Cloned human NET (cells)

COMT:

Catechol-O-methyltransferase

DMI:

Desipramine

EMT:

Extraneuronal monoamine transporter

HMG-CoA:

3-hydroxy-3-methylglutaryl-coenzyme A

HPLC:

High-performance liquid chromatography

LAD:

Left anterior descending (artery)

MAO:

Monoamine oxidase

mHED:

(–)-meta-hydroxyephedrine

MIBG:

Metaiodobenzylguanidine

NET:

Norepinephrine transporter

OCT3:

Organic cation transporter 3

PAPS:

Adenosine-3′-phosphate-5′-phosphosulfate

PET:

Positron emission tomography

PHEN:

(–)-phenylephrine

RBC(s):

Red blood cell(s)

RI:

Retention index

ROI:

Region-of-interest

SPECT:

Single photon emission computed tomography

STZ:

Streptozotocin

UDPGA:

Uridine 5′-diphosphoglucuronic acid

VMAT2:

Vesicular monoamine transporter 2

References

  • Allman KC, Stevens MJ, Wieland DM et al (1993) Noninvasive assessment of cardiac diabetic neuropathy by C-11 hydroxyephedrine and positron emission tomography. J Am Coll Cardiol 22:1425–1432

    Article  CAS  PubMed  Google Scholar 

  • Böhm M, La Rosée K, Schwinger RHG et al (1995) Evidence for reduction of norepinephrine uptake sites in the failing human heart. J Am Coll Cardiol 25:145–153

    Google Scholar 

  • Burgen ASV, Iversen LL (1965) The inhibition of noradrenaline uptake by sympathomimetic amines in the rat isolated heart. Br J Pharmacol 25:34–49

    CAS  Google Scholar 

  • Carr EA, Carroll M, Counsell RE et al (1979) Studies of uptake of the bretylium analogue, iodobenzyltrimethylammonum iodide, by non-primate, monkey and human heart. Br J Clin Pharmacol 8:425–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chakraborty PK, Gildersleeve DL, Jewett DM et al (1993) High yield synthesis of high specific activity R-(−)-[11C]epinephrine for routine PET studies in humans. Nucl Med Biol 20:939–944

    Article  CAS  PubMed  Google Scholar 

  • Cohn JN, Levine TB, Olivari MT et al (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823

    Article  CAS  PubMed  Google Scholar 

  • Costa E, Kunstman R, Gessa GL et al (1962) Structural requirements for bretylium and guanethidine-like activity in a series of guanidine derivatives. Life Sci 3:75–80

    Article  Google Scholar 

  • Dae MW, De Marco T, Botvinick EH et al (1992) Scintigraphic assessment of MIBG uptake in globally denervated human and canine hearts – implications for clinical studies. J Nucl Med 33:1444–1450

    CAS  PubMed  Google Scholar 

  • DeGrado TR, Hutchins GD, Toorongian SA et al (1993) Myocardial kinetics of carbon-11-meta-hydroxyephedrine: retention mechanisms and effects of norepinephrine. J Nucl Med 34:1287–1293

    CAS  PubMed  Google Scholar 

  • DeGrado TR, Zalutsky MR, Vaidyanathan G (1995) Uptake mechanisms of meta-[123I]iodobenzylguanidine in isolated rat heart. Nucl Med Biol 22(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • DeGrado TR, Zalutsky MR, Coleman RE et al (1998) Effects of specific activity on meta-[131I]iodobenzylguanidine kinetics in isolated rat heart. Nucl Med Biol 25:59–64

    Article  CAS  PubMed  Google Scholar 

  • Del Rosario RB, Jung Y-W, Chakraborty PK et al (1996) Synthesis and preliminary evaluation of [11C]-(−)-phenylephrine as a functional heart neuronal PET agent. Nucl Med Biol 23:611–616

    Article  PubMed  Google Scholar 

  • Dubois EA, Kam KL, Somsen GA et al (1996) Cardiac iodine-123 metaiodobenzylguanidine uptake in animals with diabetes mellitus and/or hypertension. Eur J Nucl Med 23:901–908

    Article  CAS  PubMed  Google Scholar 

  • Eisenhofer G, Smolich JJ, Esler MD (1992) Disposition of endogenous adrenaline compared to noradrenaline released by cardiac sympathetic nerves in the anaesthetized dog. Naunyn Schmiedebergs Arch Pharmacol 345:160–171

    Article  CAS  PubMed  Google Scholar 

  • Fallavollita JA, Banas MD, Suzuki G et al (2010) 11C-meta-Hydroxyephedrine defects persist despite functional improvement in hibernating myocardium. J Nucl Cardiol 17:85–96

    Article  PubMed Central  PubMed  Google Scholar 

  • Fielden R, Green AL (1965) The effects of some aralkylguanidines in mice. Br J Pharmacol 24:408–417

    CAS  Google Scholar 

  • Gandelman M, Baldwin RM, Zoghbi SS et al (1994) Evaluation of ultrafiltration for the free fraction determination of SPECT radiotracers: b-CIT, IBF and iomazenil. J Pharm Sci 83:1014–1019

    Article  CAS  PubMed  Google Scholar 

  • Glowniak J, Turner F, Gray L et al (1989) Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants. J Nucl Med 30:1182–1191

    CAS  PubMed  Google Scholar 

  • Graefe K-H (1981) The disposition of 3H-(−)-noradrenaline in the perfused cat and rabbit heart. Naunyn Schmiedebergs Arch Pharmacol 318:71–82

    CAS  PubMed  Google Scholar 

  • Graefe K-H, Bönisch H, Keller B (1978) Saturation kinetics of the adrenergic neurone uptake system in the perfused rabbit heart: a new method for determination of initial rates of amine uptake. Naunyn Schmiedebergs Arch Pharmacol 302:263–273

    Article  CAS  PubMed  Google Scholar 

  • Green AL, Fielden R, Bartlett DC et al (1967) New norepinephrine-depleting agents. b-hydroxyphenethylguanidine and related compounds. J Med Chem 10:1006–1008

    Article  CAS  PubMed  Google Scholar 

  • Hansch C, Leo A, Hoekman D (1995) Exploring QSAR: hydrophobic, electronic and steric constants. In: Computer applications in chemistry books, vol 2. ACS, Washington, DC

    Google Scholar 

  • Hayer-Zillgen M, Brüss M, Bönisch H (2002) Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol 156:829–836

    Article  Google Scholar 

  • Hellmann G, Hertting G, Peskar B (1971) Uptake kinetics and metabolism of 7-3H-dopamine in the isolated perfused rat heart. Br J Pharmacol 41:256–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iversen LL (1963) The uptake of noradrenaline by the isolated perfused rat heart. Br J Pharmacol 21:523–537

    CAS  Google Scholar 

  • Iversen LL (1965) The uptake of catechol amines at high perfusion concentrations in the rat isolated heart: a novel catechol amine uptake process. Br J Pharmacol 25:18–33

    CAS  Google Scholar 

  • Iversen LL (1967) The uptake and storage of noradrenaline in sympathetic nerves. Cambridge University Press, Cambridge

    Google Scholar 

  • Iversen LL (1971) Role of transmitter uptake mechanisms in synaptic neurotransmission. Br J Pharmacol 41:571–591

    Google Scholar 

  • Jang KS, Jung YW, Gu G et al (2013) 4-[18 F]fluoro-m-hydroxyphenethylguanidine: a radiopharmaceutical for quantifying regional cardiac sympathetic nerve density with positron emission tomography. J Med Chem 56:7312–7323

    Article  CAS  PubMed  Google Scholar 

  • Kiyono Y, Iida Y, Kawashima H et al (2001) Regional alterations of myocardial norepinephrine transporter density in streptozotocin-induced diabetic rats: implications for heterogeneous cardiac accumulation of MIBG in diabetes. Eur J Nucl Med 38:894–899

    Article  Google Scholar 

  • Kiyono Y, Kajiyama S, Fujiwara H et al (2005) Influence of the polyol pathway on norepinephrine transporter reduction in diabetic cardiac sympathetic nerves: implications for heterogeneous accumulation of MIBG. Eur J Nucl Med Mol Imaging 32:993–997

    Article  PubMed  Google Scholar 

  • Kuntzman R, Jacobson MM (1963) Monoamine oxidase inhibition by a series of compounds structurally related to bretylium and guanethidine. J Pharmacol Exp Ther 141:166–172

    CAS  PubMed  Google Scholar 

  • Kurata C, Okayama K, Wakabayashi Y et al (1997) Cardiac sympathetic neuropathy and effects of aldose reductase inhibitor in streptozotocin-induced diabetic rats. J Nucl Med 38:1677–1680

    CAS  PubMed  Google Scholar 

  • Kvetnansky R, Sabban EL, Palkovits M (2009) Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 89:535–606

    Article  CAS  PubMed  Google Scholar 

  • Lameris TW, van den Meiracker AH, Boomsma F et al (1999) Catecholamine handling in the porcine heart: a microdialysis approach. Am J Physiol 277:H1562–H1569

    CAS  PubMed  Google Scholar 

  • Leimbach WN, Wallin BG, Victor RG et al (1986) Direct evidence from intraneuronal recordings for increased central sympathetic outflow in patients with heart failure. Circulation 73:913–919

    Article  PubMed  Google Scholar 

  • Lightman SJ, Iversen LL (1969) The role of uptake-2 in the extraneuronal metabolism of catecholamines in the isolated rat heart. Br J Pharmacol 33:638–649

    Article  Google Scholar 

  • Ng CK, Holden JE, DeGrado TR et al (1991) Sensitivity of myocardial fluorodeoxyglucose lumped constant to glucose and insulin. Am J Physiol 260:H593–H603

    CAS  PubMed  Google Scholar 

  • Nguyen NTB, DeGrado TR, Chakraborty P et al (1997) Myocardial kinetics of C-11 epinephrine in the isolated working rat heart. J Nucl Med 38:780–785

    CAS  PubMed  Google Scholar 

  • Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5:584–590

    Article  CAS  PubMed  Google Scholar 

  • Pissarek M, Ermert J, Oesterreich G et al (2002) Relative uptake, metabolism, and b-receptor binding of (1R,2S)-4-18 F-fluorometaraminol and 123I-MIBG in normotensive and spontaneously hypertensive rats. J Nucl Med 43:366–373

    CAS  PubMed  Google Scholar 

  • Rabinovitch MA, Rose CP, Rouleau JL et al (1987) Metaiodobenzylguanidine [131I] scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-overload heart failure. Circ Res 61:797–804

    Article  CAS  PubMed  Google Scholar 

  • Raffel DM (2012) Targeting norepinephrine transporters in cardiac sympathetic nerve terminals. In: Welch MJ, Eckelman WC (eds) Targeted molecular imaging. Imaging in medical diagnosis and therapy. CRC Press, Boca Raton, pp 305–320

    Google Scholar 

  • Raffel DM, Chen W (2004) Binding of [3H]mazindol to cardiac norepinephrine transporters: kinetic and equilibrium studies. Naunyn Schmiedebergs Arch Pharmacol 370:9–16

    Article  CAS  PubMed  Google Scholar 

  • Raffel DM, Wieland DM (1999) Influence of vesicular storage and monoamine oxidase activity on [11C]phenylephrine kinetics: studies in isolated rat heart. J Nucl Med 40(2):323–330

    CAS  PubMed  Google Scholar 

  • Raffel DM, Wieland DM (2001) Assessment of cardiac sympathetic nerve integrity with positron emission tomography. Nucl Med Biol 28:541–559

    Article  CAS  PubMed  Google Scholar 

  • Raffel D, Loc’h C, Mardon K et al (1998) Kinetics of the norepinephrine analog [Br-76]-meta-bromobenzylguanidine in isolated working rat heart. Nucl Med Biol 25:1–16

    Article  CAS  PubMed  Google Scholar 

  • Raffel DM, Corbett JR, del Rosario RB et al (1999) Sensitivity of [11C]phenylephrine kinetics to monoamine oxidase activity in normal human heart. J Nucl Med 40(2):232–238

    CAS  PubMed  Google Scholar 

  • Raffel DM, Chen W, Sherman PS et al (2006) Dependence of cardiac 11C-meta-hydroxyephedrine retention on norepinephrine transporter density. J Nucl Med 47:1490–1496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raffel DM, Jung YW, Gildersleeve DL et al (2007) Radiolabeled phenethylguanidines: novel imaging agents for cardiac sympathetic neurons and adrenergic tumors. J Med Chem 50:2078–2088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raffel DM, Chen W, Jung YW et al (2013a) Radiotracers for cardiac sympathetic innervation: transport kinetics and binding affinities for the human norepinephrine transporter. Nucl Med Biol 40:331–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raffel DM, Koeppe RA, Jung YW et al (2013b) Quantification of cardiac sympathetic nerve density of N-11C-guanyl-meta-octopamine and tracer kinetic analysis. J Nucl Med 54:1645–1652

    Article  CAS  PubMed  Google Scholar 

  • Raisman R, Sette M, Pimoule C et al (1982) High-affinity [3H]desipramine binding in the peripheral and central nervous system: a specific site associated with the neuronal uptake of noradrenaline. Eur J Pharmacol 78:345–351

    Article  CAS  PubMed  Google Scholar 

  • Rosenspire KC, Haka MS, Van Dort ME et al (1990) Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med 31:1328–1334

    CAS  PubMed  Google Scholar 

  • Salt PJ (1972) Inhibition of noradrenaline uptake2 in the isolated rat heart by steroids, clonidine and methoxylated phenylethylamines. Eur J Pharmacol 20:329–340

    Article  CAS  PubMed  Google Scholar 

  • Schmid H, Forman LA, Cao X et al (1999) Heterogeneous cardiac sympathetic denervation and decreased myocardial nerve growth factor in streptozotocin-induced diabetic rats. Diabetes 48:603–608

    Article  CAS  PubMed  Google Scholar 

  • Schwaiger M, Hutchins GD, Wieland DM (1992) Noninvasive evaluation of the cardiac sympathetic nervous system with positron emission tomography. In: Bergmann SR, Sobel BE (eds) Positron emission tomography of the heart. Futura Publishing, Mount Kisco, pp 231–254

    Google Scholar 

  • Schwebel C, Durand A, Godin-Ribuot D et al (1999) Myocardial meta-[125I]iodobenzylguanidine uptake in awake genetically hypertensive rats at different ages: an autoradiographic study. Can J Physiol Pharmacol 77:398–406

    Article  CAS  PubMed  Google Scholar 

  • Sisson JC, Bolgos G, Johnson J (1991) Measuring acute changes in adrenergic nerve activity of the heart in the living animal. Am Heart J 121:1119–1123

    Article  CAS  PubMed  Google Scholar 

  • Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027

    PubMed  Google Scholar 

  • Taegtmeyer H, Hems R, Krebs HA (1980) Utilization of energy providing substrates in the isolated working rat heart. Biochem J 186:701–711

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thackeray JT, Radziuk J, Harper ME et al (2011) Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia. Cardiovasc Diabetol 10:75. doi:10.1186/1475-2840-1110-1175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ungerer M, Hartmann F, Karoglan M et al (1998) Regional in vivo and in vitro characterization of autonomic innervation in cardiomyopathic human heart. Circulation 97:174–180

    Article  CAS  PubMed  Google Scholar 

  • Van Dort ME, Kim JH, Tluczek L et al (1997) Synthesis of carbon-11 labeled desipramine and its metabolite 2-hydroxydesipramine: potential radiotracers for PET studies of the norepinephrine transporter. Nucl Med Biol 24:707–711

    Article  PubMed  Google Scholar 

  • Wieland DM, Brown LE, Rogers WL et al (1981) Myocardial imaging with a radioiodinated norepinephrine storage analog. J Nucl Med 22:22–31

    CAS  PubMed  Google Scholar 

  • Wolpers HG, Nguyen N, Rosenspire KC et al (1991) 11C-hydroxyephedrine as marker for neuronal catecholamine retention in reperfused canine myocardium. Coron Artery Dis 2:923–929

    Google Scholar 

  • Wu X, Kekuda R, Huang W et al (1998) Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem 273:32776–32786

    Article  CAS  PubMed  Google Scholar 

  • Zwart R, Verhaagh S, Buitelaar M et al (2001) Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol Cell Biol 21:4188–4196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Raffel PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raffel, D.M. (2015). Preclinical Evaluations of Cardiac Sympathetic Innervation Radiotracers. In: Slart, R., Tio, R., Elsinga, P., Schwaiger, M. (eds) Autonomic Innervation of the Heart. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45074-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45074-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45073-4

  • Online ISBN: 978-3-662-45074-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics