Skip to main content

Novel Strategy of Cancer Immunotherapy: Spiraling Up

  • Chapter
  • First Online:
Cancer Immunology

Abstract

Antitumor immunity has been the subject of most thorough interest and detailed investigation over the last decades. Contemporary standpoints in understanding mechanisms of innate and adaptive immunity are the basis for development and improvement of immunotherapy approaches. Despite the theoretical rationale and experimental basis of antitumor cytotoxicity of induced lymphocytes, adoptive immunotherapy with lymphokine-activated killer cells designed at the beginning of the 1980s did not achieve the expected results. Extensive clinical trials performed over the last years showed that the real effectiveness of DC vaccines is relatively low. Review of the numerous research data on cell-based technologies including the authors’ results suggests a new comprehensive concept of the most effective implication of antitumor immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Terme M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L. Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat Immunol. 2008;9:486–92.

    Article  CAS  PubMed  Google Scholar 

  3. Wong JL, Mailliard RB, Moschos SJ, Edington H, et al. Helper activity of NK cells during the dendritic cell-mediated induction of melanoma-specific cytotoxic T cells. J Immunother. 2011;34(3):270–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Harizi H. Reciprocal crosstalk between dendritic cells and natural killer cells under the effects of PGE2 in immunity and immunopathology. Cell Mol Immunol. 2013;10(3):213–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wehner R, Dietze K, Bachmann M, Schmitz M. The bidirectional crosstalk between human dendritic cells and natural killer cells. J Innate Immunol. 2011;3:258–63.

    Article  CAS  Google Scholar 

  6. Lanier LL. Missing self, NK cells, and the white album. J Immunol. 2005;174(11):6565.

    Article  CAS  PubMed  Google Scholar 

  7. Brodin P, Hoglund P. Beyond licensing and disarming: a quantitative view on NK-cell education. Eur J Immunol. 2008;38:2934–7.

    Article  CAS  PubMed  Google Scholar 

  8. Farag SS, Caligiuri MA. Human natural killer cell development and biology. Blood Rev. 2006;20(3):123–37.

    Article  CAS  PubMed  Google Scholar 

  9. Perussia B, Chen Y, Loza MJ. Peripheral NK cell phenotypes: multiple changing of faces of an adapting, developing cell. Mol Immunol. 2005;42:385–95.

    Article  CAS  PubMed  Google Scholar 

  10. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin-2 activated autologous human peripheral blood lymphocytes. J Exp Med. 1982;155(6):1823–41.

    Article  CAS  PubMed  Google Scholar 

  11. Chang AE, Rosenberg SA. Overview of interleukin-2 as an immunotherapeutic agent. Semin Surg Oncol. 1989;5(6):385–90.

    Article  CAS  PubMed  Google Scholar 

  12. Rosenberg SA. The development of new immunotherapies for the treatment of cancer using interleukin-2. A review. Ann Surg. 1988;208(2):121–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Semino C, Martini L, Queirolo P, Cangemi G, Costa R, Alloisio A, Ferlazzo G, Sertoli MR, Reali UM, Ratto GB, Melioli G. Adoptive immunotherapy of advanced solid tumors: an eight year clinical experience. Anticancer Res. 1999;19(6C):5645–9.

    CAS  PubMed  Google Scholar 

  14. Kobari M, Egawa S, Shibuya K, Sunamura M, Saitoh K, Matsuno S. Effect of intraportal adoptive immunotherapy on liver metastases after resection of pancreatic cancer. Br J Surg. 2000;87(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  15. Yamaguchi Y, Ohshita A, Kawabuchi Y, et al. Adoptive immunotherapy of cancer using activated autologous lymphocytes–current status and new strategies. Hum Cell. 2003;16:183–9.

    Article  PubMed  Google Scholar 

  16. Rosenberg SA, Lotze MT, Yang JC, et al. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst. 1993;85(8):622–32.

    Article  CAS  PubMed  Google Scholar 

  17. Kammula US, Marincola FM. Cancer immunotherapy: is there real progress at last? BioDrugs. 1999;11(4):249–60.

    Article  CAS  PubMed  Google Scholar 

  18. Rosenberg SA. Immunotherapy of patients with advanced cancer using interleukin-2 alone or in combination with lymphokine activated killer cells. Important Adv Oncol. 1988;217–57.

    Google Scholar 

  19. Kimura H, Yamaguchi YA. A phase III randomized study of interleukin-2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinoma. Cancer. 1997;80(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  20. Sangiolo D. Cytokine induced killer cells as promising immunotherapy for solid tumors. J Cancer Educ. 2011;2:363–8.

    Article  CAS  Google Scholar 

  21. Weng DS, Zhou J, Zhou QM, et al. Minimally invasive treatment combined with cytokine-induced killer cells therapy lower the short-term recurrence rates of hepatocellular carcinomas. J Immunother. 2008;31(1):63–71.

    Article  PubMed  Google Scholar 

  22. Wu C, Jiang J, Shi L, Xu N. Prospective study of chemotherapy in combination with cytokine-induced killer cells in patients suffering from advanced non-small cell lung cancer. Anticancer Res. 2008;28(6B):3997–4002.

    CAS  PubMed  Google Scholar 

  23. Shi L, Zhou Q, Wu J, et al. Efficacy of adjuvant immunotherapy with cytokine-induced killer cells in patients with locally advanced gastric cancer. Cancer Immunol Immunother. 2012;61(12):2251–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Shubina IZh, Bliumenberg AG, Volkov SM, Demidov LV, Kiselevskiĭ MV. Adoptive immunotherapy of malignancies. Vestn Ross Akad Med Nauk. 2007;(11):9–15. (Rus).

    Google Scholar 

  25. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother. 2003;26:332–42.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Donia M, Ellebaek E, Andersen MH, Straten P, Svane IM. Analysis of Vδ1 T cells in clinical grade melanoma-infiltrating lymphocytes. Oncoimmunology. 2012;1(8):1297–304.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Nguyen LT, Yen PH, Nie J, Liadis N, Ghazarian D, et al. Expansion and characterization of human melanoma Tumor-Infiltrating Lymphocytes (TILs). PLoS One. 2010;5(11):e13940.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Turcotte S, Rosenberg SA. Immunotherapy of metastatic solid cancers. Adv Surg. 2011;45:341–60.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Goedegebuure PS, Douville LM, Li H, Richmond GC, Schoof DD, et al. Adoptive immunotherapy with tumor-infiltrating lymphocytes and interleukin-2 in patients with metastatic malignant melanoma and renal cell carcinoma: a pilot study. J Clin Oncol. 1995;13:1939–49.

    CAS  PubMed  Google Scholar 

  30. Reali UM, Martini L, Borgognoni L, Semino C, Pietra G, et al. Infusion of in vitro expanded tumour-infiltrating lymphocytes and recombinant interleukin-2 in patients with surgically resected lymph node metastases of malignant melanoma: a pilot study. Melanoma Res. 1998;8:77–82.

    Article  CAS  PubMed  Google Scholar 

  31. Queirolo P, Ponte M, Gipponi M, Cafiero F, Peressini A, et al. Adoptive immunotherapy with tumor-infiltrating lymphocytes and subcutaneous recombinant interleukin-2 plus interferon alfa-2a for melanoma patients with nonresectable distant disease: a phase I/II pilot trial. Melanoma Istituto Scientifico Tumori Group. Ann Surg Oncol. 1999;6:272–8.

    Article  CAS  PubMed  Google Scholar 

  32. Dreno B, Nguyen JM, Khammari A, Pandolfino MC, Tessier MH, et al. Randomized trial of adoptive transfer of melanoma tumor-infiltrating lymphocytes as adjuvant therapy for stage III melanoma. Cancer Immunol Immunother. 2002;51:539–46.

    Article  CAS  PubMed  Google Scholar 

  33. Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Park TS, Rosenberg SA, Morgan RA. Treating cancer with genetically engineered T cells trends. Biogeosciences. 2011;29(11):550–7.

    CAS  Google Scholar 

  35. Dudley ME, et al. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res. 2010;16:6122–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Coccoris M, et al. T cell receptor (TCR) gene therapy to treat melanoma: lessons from clinical and preclinical studies. Expert Opin Biol Ther. 2010;10:547–62.

    Article  CAS  PubMed  Google Scholar 

  37. Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314(5796):126–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Heemskerk B, Liu K, Dudley ME, Johnson LA, et al. Adoptive cell therapy for patients with melanoma, using tumor-infiltrating lymphocytes genetically engineered to secrete interleukin-2. Hum Gene Ther. 2008;19(5):496–510.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Shi H, Liu L, Wang Z. Improving the efficacy and safety of engineered T cell therapy for cancer. Cancer Lett. 2013;328(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  40. Chen Y-Q, Shi H-Z, Qin X-J, et al. CD4+CD25+ regulatory T lymphocytes in malignant pleural effusion. Am J Respir Crit Care Med. 2005;172:1434–9.

    Article  PubMed  Google Scholar 

  41. Kobayashi N, Hiraoka N, Yamagami W, et al. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res. 2007;13:902–11.

    Article  CAS  PubMed  Google Scholar 

  42. Chikileva IO, Shubina IZ, Baronzio G, Kiselevsky MV. Is it necessary to deplete the lymphokine activated killers’ populations of CD4+CD25+ lymphocytes? Regulatory Foxp3-positive T cells within lymphokine activated killers. Biomed Pharmacother. 2010;64(6):379–85.

    Article  CAS  PubMed  Google Scholar 

  43. Keller R. Dendritic cells: their significance in health and disease. Immunol Lett. 2001;78(3):113–22.

    Article  CAS  PubMed  Google Scholar 

  44. Romani N, Reider D, Heuer M, et al. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods. 1996;196(2):137–51.

    Article  CAS  PubMed  Google Scholar 

  45. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med. 1996;2(1):52–8.

    Article  CAS  PubMed  Google Scholar 

  46. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4(3):328–32.

    Article  CAS  PubMed  Google Scholar 

  47. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Oshita C, Takikawa M, Kume A, et al. Dendritic cell-based vaccination in metastatic melanoma patients: phase II clinical trial. Oncol Rep. 2012;28(4):1131–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Yano Y, Ueda Y, Itoh T, Fuji N, Okugawa K, Naito K, Imura K, Kohara J, Hayashi T, Nakane K, Matsuura Y, Kawai K, Yamagishi H. A new strategy using autologous dendritic cells and lymphokine-activated killer cells for cancer immunotherapy: efficient maturation of DCs by co-culture with LAK cells in vitro. Oncol Rep. 2006;16(1):147–52.

    CAS  PubMed  Google Scholar 

  50. Wang K, Gao X, Pang J, Liu X, Cai Y, Zhang Y, et al. Dendritic cells transduced with a PSMA-encoding adenovirus and cocultured with autologous cytokine-induced lymphocytes induce a specific and strong immune response against prostate cancer cells. Urol Oncol. 2009;27:26–32.

    Article  PubMed  Google Scholar 

  51. Zhan HL, Gao X, Qiu JG, Cai YB, Situ J, Wen XQ. Effects of dendritic cells co-cultured with CIK cells on renal carcinoma cells. Chin J Pathophysiol (Chin). 2006;22:1993–8.

    CAS  Google Scholar 

  52. McLaughlin JK, Lipworth L. Epidemiologic aspects of renal cell cancer. Semin Oncol. 2000;27:115–23. Breda A, Konijeti R, Lam JS. Patterns of recurrence and surveillance strategies for renal cell carcinoma following surgical resection. Expert Rev Anticancer Ther. 2007;7:847–62.

    CAS  PubMed  Google Scholar 

  53. Zhan HL, Gao X, Pu XY, Li W, Li ZJ, Zhou XF, Qiu JG. A randomized controlled trial of postoperative tumor lysate-pulsed dendritic cells and cytokine-induced killer cells immunotherapy in patients with localized and locally advanced renal cell carcinoma. Chin Med J (Engl). 2012;125(21):3771–7.

    Google Scholar 

  54. Ren J, Di L, Song G, Yu J, Jia J, Zhu Y, et al. Selections of appropriate regimen of high-dose chemotherapy combined with adoptive cellular therapy with dendritic and cytokine-induced killer cells improved progression-free and overall survival in patients with metastatic breast cancer: reargument of such contentious therapeutic preferences. Clin Transl Oncol. 2013;15(10):780–8.

    Article  CAS  PubMed  Google Scholar 

  55. Li H, Wang C, Yu J, Cao S, Wei F, Zhang W, Han Y, Ren XB. Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery. Cytotherapy. 2009;11(8):1076–83.

    Article  CAS  PubMed  Google Scholar 

  56. Zhou P, Liang P, Dong B, Yu X, Han Z, Xu Y. Phase I clinical study of combination therapy with microwave ablation and cellular immunotherapy in hepatocellular carcinoma. Cancer Biol Ther. 2011;11(5):450–65.

    Article  CAS  PubMed  Google Scholar 

  57. Qiu Y, Yun MM, Xu MB, Wang YZ, Yun S. Pancreatic carcinoma-specific immunotherapy using synthesized alpha-galactosyl epitope-activated immune responders: findings from a pilot study. Int J Clin Oncol. 2012;18(4):657–65.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Zh. Shubina PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demidov, L.V., Shubina, I.Z., Kiselevsky, M.V. (2015). Novel Strategy of Cancer Immunotherapy: Spiraling Up. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44946-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44946-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44945-5

  • Online ISBN: 978-3-662-44946-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics