Skip to main content

The Different Categories of Genetically Standardized Populations of Laboratory Mice

  • Chapter
  • First Online:
Genetics of the Mouse

Abstract

At the beginning of the twentieth century when genetics began to emerge as an experimental science, laboratory mouse resources were extremely limited. Aside from a few coat color mutants, which were bred by fanciers as pets, the only animals available for experiments were “albino” mice. These mice were bred with no specific mating protocol and were, in most cases, genetically heterogeneous. At that time, and based on the experience of dog and horse breeders, inbreeding was a practice to be avoided by all possible means because it was thought to lead to a decline in vigor and ultimately to the extinction of the colony. In fact, it is not an exaggeration to say that the only qualities that were required of these “albino” mice were prolificacy, robustness, and tameness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Chap.  6 we explained that, as a consequence of epigenetic modifications at the genome level, such a uniparental mouse could not exist in practice.

  2. 2.

    The reduction in size of the introgressed chromosomal segment is in steps instead of linear.

  3. 3.

    G.D. Snell, J. Dausset and B. Benacerraf were awarded the Nobel Prize in 1980 “for their discoveries concerning genetically determined structures on the cell surface that regulate immunological reactions”.

References

  • Aylor DL, Valdar W, Foulds-Mathes W, Buus RJ, Verdugo RA, Baric RS, Ferris MT, Frelinger JA, Heise M, Frieman MB, Gralinski LE, Bell TA, Didion JD, Hua K, Nehrenberg DL, Powell CL, Steigerwalt J, Xie Y, Kelada SN, Collins FS, Yang IV, Schwartz DA, Branstetter LA, Chesler EJ, Miller DR, Spence J, Liu EY, McMillan L, Sarkar A, Wang J, Wang W, Zhang Q, Broman KW, Korstanje R, Durrant C, Mott R, Iraqi FA, Pomp D, Threadgill D, de Villena FP, Churchill GA (2011) Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Res 21:1213–1222

    Google Scholar 

  • Bailey DW (1971) Recombinant-inbred strains. An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation 11:325–327

    Article  CAS  PubMed  Google Scholar 

  • Banbury (1997) Mutant mice and neuroscience: recommendations concerning genetic background: banbury conference on genetic background in mice. Neuron 19:755–759

    Google Scholar 

  • Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF, Fisher EM (2000) Genealogies of mouse inbred strains. Nat Genet 24:23–25

    Article  CAS  PubMed  Google Scholar 

  • Benavides FJ (1999) Genetic contamination of an SJL/J mouse colony: rapid detection by PCR-based microsatellite analysis. Contemp Top Lab Anim Sci 38:54–55

    PubMed  Google Scholar 

  • Berning AK, Eicher EM, Paul WE, Scher I (1980) Mapping of the X-linked immune deficiency mutation (xid) of CBA/N mice. J Immunol 124:1875–1877

    CAS  PubMed  Google Scholar 

  • Bishop CE, Boursot P, Baron B, Bonhomme F, Hatat D (1985) Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature 315:70–72

    Article  CAS  PubMed  Google Scholar 

  • Bonhomme F (1986) Evolutionary relationships in the genus Mus. Curr Top Microbiol Immunol 127:19–34

    CAS  PubMed  Google Scholar 

  • Bonhomme F, Guénet JL (1996) The laboratory mouse and its wild relatives. In: Lyon M, Rastan S, Brown DM (ed) Genetic variants and strains of the laboratory mouse. Oxford University Press, New York. pp 1577–1596

    Google Scholar 

  • Bonhomme F, Guénet JL, Dod B, Moriwaki K, Bulfield G (1987) The polyphyletic origin of laboratory inbred mice and their rate of evolution. Biol J Linn Soc 30:51–58

    Article  Google Scholar 

  • Bryda EC, Riley LK (2008) Multiplex microsatellite marker panels for genetic monitoring of common rat strains. J Am Assoc Lab Anim Sci 47:37–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bulfield G, Siller WG, Wight PA, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 81:1189–1192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burgio G, Baylac M, Heyer E, Montagutelli X (2009) Genetic analysis of skull shape variation and morphological integration in the mouse using interspecific recombinant congenic strains between C57BL/6 and mice of the mus spretus species. Evolution 63:2668–2686

    Article  PubMed  Google Scholar 

  • Burgio G, Szatanik M, Guénet JL, Arnau MR, Panthier JJ, Montagutelli X (2007) Interspecific recombinant congenic strains between C57BL/6 and mice of the Mus spretus species: a powerful tool to dissect genetic control of complex traits. Genetics 177:2321–2333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Kadomatsu K, Kondo M, Toyama Y, Toshimori K, Ueno S, Miyake Y, Muramatsu T (2004) Effects of flanking genes on the phenotypes of mice deficient in basigin/CD147. Biochem Biophys Res Commun 324:147–153

    Article  CAS  PubMed  Google Scholar 

  • Chesler EJ, Miller DR, Branstetter LR, Galloway LD, Jackson BL, Philip VM, Voy BH, Culiat CT, Threadgill DW, Williams RW, Churchill GA, Johnson DK, Manly KF (2008) The collaborative cross at Oak ridge national laboratory: developing a powerful resource for systems genetics. Mamm Genome 19:382–389

    Article  PubMed Central  PubMed  Google Scholar 

  • Chia R, Achilli F, Festing MF, Fisher EMC (2005) The origins and uses of mouse outbred stocks. Nat Genet 37:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, Bult CJ, Agarwala R, Cherry JL, DiCuccio M, Hlavina W, Kapustin Y, Meric P, Maglott D, Birtle Z, Marques AC, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Runnheim R, Forrest D, Amos-Landgraf J, Schwartz DC, Cheng Z, Lindblad-Toh K, Eichler EE, Ponting CP (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 7:e1000112

    Article  PubMed Central  PubMed  Google Scholar 

  • Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, Beavis WD, Belknap JK, Bennett B, Berrettini W, Bleich A, Bogue M, Broman KW, Buck KJ, Buckler E, Burmeister M, Chesler EJ, Cheverud JM, Clapcote S, Cook MN, Cox RD, Crabbe JC, Crusio WE, Darvasi A, Deschepper CF, Doerge RW, Farber CR, Forejt J, Gaile D, Garlow SJ, Geiger H, Gershenfeld H, Gordon T, Gu J, Gu W, de Haan G, Hayes NL, Heller C, Himmelbauer H, Hitzemann R, Hunter K, Hsu HC, Iraqi FA, Ivandic B, Jacob HJ, Jansen RC, Jepsen KJ, Johnson DK, Johnson TE, Kempermann G, Kendziorski C, Kotb M, Kooy RF, Llamas B, Lammert F, Lassalle JM, Lowenstein PR, Lu L, Lusis A, Manly KF, Marcucio R, Matthews D, Medrano JF, Miller DR, Mittleman G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Morris DG, Mott R, Nadeau JH, Nagase H, Nowakowski RS, O’Hara BF, Osadchuk AV, Page GP, Paigen B, Paigen K, Palmer AA, Pan HJ, Peltonen-Paloti L, Peirce J, Pomp D, Pravenec M, Prows DR, Qi Z, Reeves RH, Roder J, Rosen GD, Schadt EE, Schalkwyk LC, Seltzer Z, Shimomura K, Shou S, Sillanpaa MJ, Siracusa LD, Snoeck HW, Spearow JL, Svenson K, Tarantino LM, Threadgill D, Toth LA, Valdar W, de Villena FP, Warden C, Whatley S, Williams RW, Wiltshire T, Yi N, Zhang D, Zhang M, Zou F, The Complex Trait Consortium (2004) The collaborative cross: a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137

    Article  CAS  PubMed  Google Scholar 

  • Coleman DL, Hummel KP (1973) The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia 9:287–293

    Article  CAS  PubMed  Google Scholar 

  • Davisson MT (1996) Rules for nomenclature of inbred strains. In: Lyon MF, Rastan S, Brown SDM (eds) Genetic variants and strains of the laboratory mouse. Oxford University Press, Oxford, pp 1532–1536

    Google Scholar 

  • Dejager L, Libert C, Montagutelli X (2009) Thirty years of Mus spretus: a promising future. Trends Genet 25:234–241

    Article  CAS  PubMed  Google Scholar 

  • Demant P (2003) Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nat Rev Genet 4:721–734

    Article  CAS  PubMed  Google Scholar 

  • Demant P, Hart AA (1986) Recombinant congenic strains–a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics 24:416–422

    Article  CAS  PubMed  Google Scholar 

  • Doetschman T (2009) Influence of genetic background on genetically engineered mouse phenotypes. Methods Mol Biol 530:423–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferris SD, Sage RD, Wilson AC (1982) Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature 295:163–165

    Article  CAS  PubMed  Google Scholar 

  • Festing MF (1979) Inbred strains in biomedical research. Macmillan, London

    Google Scholar 

  • Festing MF (2010) Inbred strains should replace outbred stocks in toxicology, safety testing, and drug development. Toxicol Pathol 38:681–690

    Article  CAS  PubMed  Google Scholar 

  • Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 4:271–286

    Article  Google Scholar 

  • Forejt J (1996) Hybrid sterility in the mouse. Trends Genet 12:412–417

    Article  CAS  PubMed  Google Scholar 

  • Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA, Beilharz EJ, Gupta RV, Montgomery J, Morenzoni MM, Nilsen GB, Pethiyagoda CL, Stuve LL, Johnson FM, Daly MJ, Wade CM, Cox DR (2007) A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448:1050–1053

    Article  CAS  PubMed  Google Scholar 

  • Freeman D, Lesche R, Kertesz N, Wang S, Li G, Gao J, Groszer M, Martinez-Diaz H, Rozengurt N, Thomas G, Liu X, Wu H (2006) Genetic background controls tumor development in PTEN-deficient mice. Cancer Res 66:6492–6496

    Article  CAS  PubMed  Google Scholar 

  • Glenister PH, Thornton CE (2000) Cryoconservation–archiving for the future. Mamm Genome 11:565–571

    Article  CAS  PubMed  Google Scholar 

  • Goios A, Pereira L, Bogue M, Macaulay V, Amorim A (2007) mtDNA phylogeny and evolution of laboratory mouse strains. Genome Res 17:293–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gregorova S, Divina P, Storchova R, Trachtulec Z, Fotopulosova V, Svenson KL, Donahue LR, Paigen B, Forejt J (2008) Mouse consomic strains: exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. Genome Res 18:509–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grüneberg H (1952) The genetics of the mouse, 2nd edn. Martinus Nijhoff, The Hague

    Google Scholar 

  • Guénet JL, Bonhomme F (2003) Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet 19:24–31

    Article  PubMed  Google Scholar 

  • Hartl DL (2001) Genetic management of outbred laboratory rodent populations. Charles River Genetic Literature

    Google Scholar 

  • Hummel KP, Coleman DL, Lane PW (1972) The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains. Biochem Genet 7:1–13

    Article  CAS  PubMed  Google Scholar 

  • Johnson LL (1981) At how many histocompatibility loci do congenic mouse strains differ? J Hered 72:27–31

    CAS  PubMed  Google Scholar 

  • Kenneth NS, Younger JM, Hughes ED, Marcotte D, Barker PA, Saunders TL, Duckett CS (2012) An inactivating caspase 11 passenger mutation originating from the 129 murine strain in mice targeted for c-IAP1. Biochem J 443:355–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuperwasser C, Hurlbut GD, Kittrell FS, Dickinson ES, Laucirica R, Medina D, Naber SP, Jerry DJ (2000) Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am J Pathol 157:2151–2159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linder CC (2001) The influence of genetic background on spontaneous and genetically engineered mouse models of complex diseases. Lab Anim (NY) 30:34–39

    CAS  Google Scholar 

  • Mao HZ, Roussos ET, Peterfy M (2006) Genetic analysis of the diabetes-prone C57BLKS/J mouse strain reveals genetic contribution from multiple strains. Biochim Biophys Acta 1762:440–446

    Article  CAS  PubMed  Google Scholar 

  • Markel P, Shu P, Ebeling C, Carlson GA, Nagle DL, Smutko JS, Moore KJ (1997) Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet 17:280–284

    Article  CAS  PubMed  Google Scholar 

  • Mashimo T, Voigt B, Tsurumi T, Naoi K, Nakanishi S, Yamasaki K, Kuramoto T, Serikawa T (2006) A set of highly informative rat simple sequence length polymorphism (SSLP) markers and genetically defined rat strains. BMC Genet 7:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Mattapallil MJ, Wawrousek EF, Chan CC, Zhao H, Roychoudhury J, Ferguson TA, Caspi RR (2012) The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6 N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci 53:2921–2927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mattson DL, Dwinell MR, Greene AS, Kwitek AE, Roman RJ, Jacob HJ, Cowley AW Jr (2008) Chromosome substitution reveals the genetic basis of Dahl salt-sensitive hypertension and renal disease. Am J Physiol Renal Physiol 295:837–842

    Article  Google Scholar 

  • Mekada K, Abe K, Murakami A, Nakamura S, Nakata H, Moriwaki K, Obata Y, Yoshiki A (2009) Genetic differences among C57BL/6 substrains. Exp Anim 58:141–149

    Article  CAS  PubMed  Google Scholar 

  • Moran N, Bassani DM, Desvergne JP, Keiper S, Lowden PA, Vyle JS, Tucker JH (2006) Detection of a single DNA base-pair mismatch using an anthracene-tagged fluorescent probe. Chem Commun 48:5003–5005

    Article  Google Scholar 

  • Moriwaki K, Shiroishi T, Yonekowa H (1994) Genetics in wild mice: its application to biomedical research. Japan Scientific Societies Press

    Google Scholar 

  • Morse HC III (1978) Origins of inbred mice. Academic Press, New York

    Google Scholar 

  • Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci USA 97:12649–12654

    Article  PubMed Central  PubMed  Google Scholar 

  • Myakishev MV, Khripin Y, Hu S, Hamer DH (2001) High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res 11:163–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nadeau JH, Singer JB, Matin A, Lander ES (2000) Analysing complex genetic traits with chromosome substitution strains. Nat Genet 24:221–225

    Article  CAS  PubMed  Google Scholar 

  • Nijman IJ, Kuipers S, Verheul M, Guryev V, Cuppen E (2008) A genome-wide SNP panel for mapping and association studies in the rat. BMC Genom 9:95

    Article  Google Scholar 

  • Ogonuki N, Inoue K, Hirose M, Miura I, Mochida K, Sato T, Mise N, Mekada K, Yoshiki A, Abe K, Kurihara H, Wakana S, Ogura A (2009) A high-speed congenic strategy using first-wave male germ cells. PLoS ONE 4:e4943

    Article  PubMed Central  PubMed  Google Scholar 

  • Paigen K, Eppig JT (2000) A mouse phenome project. Mamm Genome 11:715–717

    Article  CAS  PubMed  Google Scholar 

  • Petkov PM, Cassell MA, Sargent EE, Donnelly CJ, Robinson P, Crew V, Asquith S, Haar RV, Wiles MV (2004a) Development of a SNP genotyping panel for genetic monitoring of the laboratory mouse. Genomics 83:902–911

    Article  CAS  PubMed  Google Scholar 

  • Petkov PM, Ding Y, Cassell MA, Zhang W, Wagner G, Sargent EE, Asquith S, Crew V, Johnson KA, Robinson P, Scott VE, Wiles MV (2004b) An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res 14:1806–1811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petkov PM, Graber JH, Churchill GA, DiPetrillo K, King BL, Paigen K (2005) Evidence of a large-scale functional organization of mammalian chromosomes. PLoS Genet 1(3):e33

    Article  PubMed Central  PubMed  Google Scholar 

  • Poiley SM (1960) A systematic method of breeder rotation for non-inbred laboratory animals colonies. Proc Anim Care Panel 10:159

    Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  CAS  PubMed  Google Scholar 

  • Rader K (2004) Making mice: standardizing animals for American biomedical research, 1900–1955. Princeton University Press, New Jersey

    Google Scholar 

  • Rasmussen AL, Okumura A, Ferris MT, Green R, Feldmann F, Kelly SM, Scott DP, Safronetz D, Haddock E, LaCasse R, Thomas MJ, Sova P, Carter VS, Weiss JM, Miller DR, Shaw GD, Korth MJ, Heise MT, Baric RS, Manuel de Villena FP, Feldmann H, Katze MG (2014) Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance. Science. pii: 1259595. [Epub ahead of print]

    Google Scholar 

  • Schlager G, Dickie MM (1967) Spontaneous mutations and mutation rates in the house mouse. Genetics 57:319–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schuster-Gossler K, Lee AW, Lerner CP, Parker HJ, Dyer VW, Scott VE, Gossler A, Conover JC (2001) Use of coisogenic host blastocysts for efficient establishment of germline chimeras with C57BL/6 J ES cell lines. Biotechniques 31:1022–1026

    CAS  PubMed  Google Scholar 

  • Simon MM, Greenaway S, White JK, Fuchs H, Gailus-Durner V, Wells S, Sorg T, Wong K, Bedu E, Cartwright EJ, Dacquin R, Djebali S, Estabel J, Graw J, Ingham NJ, Jackson IJ, Lengeling A, Mandillo S, Marvel J, Meziane H, Preitner F, Puk O, Roux M, Adams DJ, Atkins S, Ayadi A, Becker L, Blake A, Brooker D, Cater H, Champy MF, Combe R, Danecek P, di Fenza A, Gates H, Gerdin AK, Golini E, Hancock JM, Hans W, Hölter SM, Hough T, Jurdic P, Keane TM, Morgan H, Müller W, Neff F, Nicholson G, Pasche B, Roberson LA, Rozman J, Sanderson M, Santos L, Selloum M, Shannon C, Southwell A, Tocchini-Valentini GP, Vancollie VE, Westerberg H, Wurst W, Zi M, Yalcin B, Ramirez-Solis R, Steel KP, Mallon AM, de Angelis MH, Herault Y, Brown SD (2013) A comparative phenotypic and genomic analysis of C57BL/6 J and C57BL/6 N mouse strains. Genome Biol 14(7):R82

    Article  PubMed Central  PubMed  Google Scholar 

  • Snell GD (1948) Methods for the study of histocompatibility genes. J Genet 49:87–108

    Article  CAS  PubMed  Google Scholar 

  • Specht CG, Schoepfer R (2001) Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6 J inbred mice. BMC Neurosci 2:11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stevens JC, Banks GT, Festing MF, Fisher EM (2007) Quiet mutations in inbred strains of mice. Trends Mol Med 13:512–519

    Article  CAS  PubMed  Google Scholar 

  • Strong LC (1978) Inbred mice in science in origins of inbred mice. In: Morse III HC (ed) Academic Press—Adapted for the Web by: mouse genome informatics. The Jackson Laboratory, Bar Harbor, Maine USA

    Google Scholar 

  • Threadgill DW, Churchill GA (2012) Ten years of the collaborative cross. Genetics 190:291–294

    Article  PubMed Central  PubMed  Google Scholar 

  • Threadgill DW, Miller DR, Churchill GA, de Villena FP (2011) The collaborative cross: a recombinant inbred mouse population for the systems genetic era. ILAR J 52:24–31

    Google Scholar 

  • Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, LaMantia C, Mourton T, Herrup K, Harris RC et al (1995) Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269:230–234

    Article  CAS  PubMed  Google Scholar 

  • Tucker PK, Phillips KS, Lundrigan B (1992) A mouse Y chromosome pseudogene is related to human ubiquitin activating enzyme E1. Mamm Genome 3:28–35

    Article  CAS  PubMed  Google Scholar 

  • Wade CM, Kulbokas EJ 3rd, Kirby AW, Zody MC, Mullikin JC, Lander ES, Lindblad-Toh K, Daly MJ (2002) The mosaic structure of variation in the laboratory mouse genome. Nature 420:574–578

    Article  CAS  PubMed  Google Scholar 

  • Wakeland E, Morel L, Achey K, Yui M, Longmate J (1997) Speed congenics: a classic technique in the fast lane (relatively speaking). Immunol Today 18:472–477

    Article  CAS  PubMed  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigó R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O’Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  PubMed  Google Scholar 

  • Wolfer DP, Crusio WE, Lipp HP (2002) Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci 25:336–340

    Article  CAS  PubMed  Google Scholar 

  • Wotjak CT (2003) C57BLack/BOX? The importance of exact mouse strain nomenclature. Trends Genet 19:183–184

    Article  CAS  PubMed  Google Scholar 

  • Yalcin B, Fullerton J, Miller S, Keays DA, Brady S, Bhomra A, Jefferson A, Volpi E, Copley RR, Flint J, Mott R (2004) Unexpected complexity in the haplotypes of commonly used inbred strains of laboratory mice. Proc Natl Acad Sci USA 101:9734–9739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yalcin B, Nicod J, Bhomra A, Davidson S, Cleak J, Farinelli L, Osterås M, Whitley A, Yuan W, Gan X, Goodson M, Klenerman P, Satpathy A, Mathis D, Benoist C, Adams DJ, Mott R, Flint J (2010) Commercially available outbred mice for genome-wide association studies. PLoS Genet 6(9):e1001085

    Google Scholar 

  • Yalcin B, Wong K, Agam A, Goodson M, Keane TM, Gan X, Nellaker C, Goodstadt L, Nicod J, Bhomra A, Hernandez-Pliego P, Whitley H, Cleak J, Dutton R, Janowitz D, Mott R, Adams DJ, Flint J (2011) Sequence-based characterization of structural variation in the mouse genome. Nature 477:326–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, Bonhomme F, Yu AH, Nachman MW, Pialek J, Tucker P, Boursot P, McMillan L, Churchill GA, de Villena FP (2011) Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 43:648–655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yonekawa H, Moriwaki K, Gotoh O, Miyashita N, Migita S, Bonhomme F, Hjorth JP, Petras ML, Tagashira Y (1982) Origins of laboratory mice deduced from restriction patterns of mitochondrial DNA. Differentiation 22:222–226

    Article  CAS  PubMed  Google Scholar 

  • Zou F, Gelfond JA, Airey DC, Lu L, Manly KF, Williams RW, Threadgill DW (2005) Quantitative trait locus analysis using recombinant inbred intercrosses: theoretical and empirical considerations. Genetics 170:1299–1311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zurita E, Chagoyen M, Cantero M, Alonso R, Gonzalez-Neira A, Lopez-Jimenez A, Lopez-Moreno JA, Landel CP, Benitez J, Pazos F, Montoliu L (2011) Genetic polymorphisms among C57BL/6 mouse inbred strains. Transgenic Res 20:481–489

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Guénet .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guénet, JL., Benavides, F., Panthier, JJ., Montagutelli, X. (2015). The Different Categories of Genetically Standardized Populations of Laboratory Mice. In: Genetics of the Mouse. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44287-6_9

Download citation

Publish with us

Policies and ethics