Skip to main content

The Role of Frequency in Vibrational Communication of Orthoptera

  • Chapter
  • First Online:
Studying Vibrational Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 3))

Abstract

The chapter examines characteristics and function of vibratory signals in Orthoptera, which are emitted by different mechanisms. Detection and neural processing of the spectrally diverse signals and the behavioural correlates indicating differential perception of different frequency ranges are discussed. In the light of the knowledge mainly acquired from hearing Ensifera, data from primitively non-hearing cave crickets are highlighted as a comparative system, offering important new insights into the functional organisation and evolution of the vibratory system in Ensifera, and Orthoptera in general. Data from cave crickets, from the behaviour to properties of neuron circuits, stress the importance of perception of low-frequency vibratory signals, which appear to have been underestimated in these insects so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander RD, Otte D (1967) The evolution of genitalia and mating behavior in crickets (Gryllidae) and other Orthoptera. Miscellaneous Publications Museum of Zoology, University of Michigan

    Google Scholar 

  • Autrum H, Schneider W (1948) Vergleichende Untersuchungen über den Erschütterungssinn der Insekten. Z Vergl Physiol 31:77–88

    Article  CAS  Google Scholar 

  • Ball EE, Oldfield BP, Michel RK (1989) The auditory organ structure, development and function. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, Ithaca, pp 391–421

    Google Scholar 

  • Bell PD (1980) Multimodal communication by the black-horned tree cricket, Oecanthus nigricornis (Walker) (Orthoptera, Gryllidae). Can J Zool 58:1861–1868

    Article  Google Scholar 

  • Benediktov AA (2009) Vibration communication in orthopteroid insects (Orthoptera) from suborder Caelifera. Moscow Univ Biol Sci Bull 64:126–128

    Article  Google Scholar 

  • Buh B (2011) Morphological and functional characterization of vibratory receptor neurons in cave crickets of the genus Troglophilus (Orthoptera, Rhaphidophoridae). Graduation thesis, University of Ljubljana

    Google Scholar 

  • Castellanos I, Barbosa P (2006) Evaluation of predation risk by a caterpillar using substrate-borne vibrations. Anim Behav 72:461–469

    Article  Google Scholar 

  • Cocroft RG, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Article  Google Scholar 

  • Connetable S, Robert A, Bouffault F, Bordereau C (1999) Vibratory alarm signals in two sympatric higher termite species: Pseudacanthotermes spiniger and P. militaris (Termitidae, Macrotermitinae). J Insect Behav 12:329–342

    Article  Google Scholar 

  • Čokl A, Kalmring K, Wittig H (1977) The responses of auditory ventral-cord neurones of Locusta migratoria to vibration stimuli. J Comp Physiol A 120:161–172

    Article  Google Scholar 

  • Čokl A, Kalmring K, Rössler W (1995) Physiology of atympanate tibial organs in forelegs and midlegs of the cave-living Ensifera, Troglophilus neglectus (Rhaphidophoridae, Gryllacridoidea). J Exp Zool 273:376–388

    Article  Google Scholar 

  • Dambach M (1972) Der Vibrationssinn der Gryllen. I. Schwellenmessungen an Beinen frei beweglicher Tiere. J Comp Physiol A 79:281–304

    Article  Google Scholar 

  • Dambach M (1989) Vibrational responses. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, Ithaca, pp 179–197

    Google Scholar 

  • De Luca PA, Morris GK (1998) Courtship communication in meadow katydids: Female preference for large male vibrations. Behaviour 135:777–794

    Article  Google Scholar 

  • Desutter-Grandcolas L (2003) Phylogeny and the evolution of acoustic communication in extant Ensifera (Insecta, Orthoptera). Zool Scripta 32:525–261

    Article  Google Scholar 

  • Field LH (2001a) The biology of wetas, king crickets and their allies. CABI Publishing, Oxon

    Book  Google Scholar 

  • Field LH (2001b) Stridulatory mechanisms and associated behaviour in New Zealand wetas. In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Oxon, pp 271–295

    Chapter  Google Scholar 

  • Field LH, Bailey WJ (1997) Sound production in primitive Orthoptera from Western Australia: sounds used in defence and social communication in Ametrus sp. and Hadrogryllacris sp. (Gryllacrididae: Orthoptera). J Nat History 31:1127–1141

    Article  Google Scholar 

  • Field LH, Matheson T (1998) Chordotonal organs of insects. Academic Press, London

    Google Scholar 

  • Field LH, Pfluger H-J (1989) The femoral chordotonal organ: A bifunctional orthopteran (Locusta migratoria) sense organ? Comp Biochem Physiol A 93:729–743

    Article  Google Scholar 

  • Friedel T (1999) The vibrational startle response of the desert locust Schistocerca gregaria. J Exp Biol 202:2151–2159

    CAS  PubMed  Google Scholar 

  • Greenfield MD (2002) Signalers and receivers: Mechanisms and evolution of arthropod communication. Oxford University Press, Oxford

    Google Scholar 

  • Gwynne DT (1977) Mating behaviour of Neoconocephalus ensiger (Orthoptera: Tettigoniidae) with notes on the calling song. Can Ent 109:237–242

    Article  Google Scholar 

  • Hill PSM, Shadley JR (1997) Substrate vibration as a component of a calling song. Naturwissenschaften 84:460–463

    Article  CAS  Google Scholar 

  • Hill PSM, Shadley JR (2001) Talking back: Sending soil vibration signals to lekking prairie mole cricket males. Am Zool 41:1200–1214

    Article  Google Scholar 

  • Jeram S, Čokl A, Kalmring K (1995) Structure of atympanate tibial organs in legs of the cave-living Ensifera Troglophilus neglectus (Gryllacridoidea, Rhaphidophoridae). J Morph 223:109–118

    Article  Google Scholar 

  • Kalmring K, Kühne R (1980) The coding of airborne-sound and vibrational signals in bimodal ventral-cord neurons of the grasshopper Tettigonia cantans. J Comp Physiol A 139:267–275

    Article  Google Scholar 

  • Kalmring K, Lewis B, Eichendorf A (1978) The physiological characteristics of primary neurons of the complex tibial organ of Decticus verrucivorus L. (Orthoptera, Tettigoniidae). J Comp Physiol A 127:109–121

    Article  Google Scholar 

  • Kalmring K, Rossler W, Unrast C (1994) Complex tibial organs in the fore-, mid- and hindlegs of the bushcricket Gampsocleis gratiosa (Tettigoniidae): comparison of physiology of the organs. J Exp Zool 270:155–161

    Article  Google Scholar 

  • Kalmring K, Hoffmann E, Jatho M, Sickmann T, Grossbach M (1996) The auditory- vibratory sensory system of the bushcricket Polysarcus denticauda. (Phaneropterinae, Tettigoniidae) II. Physiology of receptor cells. J Exp Zool 276:315–329

    Article  Google Scholar 

  • Kalmring K, Sickmann T, Jatho M, Zhantiev R, Grossbach M (1997) The auditory- vibratory sensory system of the bushcricket Polysarcus denticauda. (Phaneropterinae, Tettigoniidae) III. Physiology of the ventral cord neurons ascending to the head ganglia. J Comp Physiol A 279:9–28

    Google Scholar 

  • Keuper A, Kühne R (1983) The acoustic behaviour of the bushcricket Tettigonia cantans II. Transmission of airborne sound and vibration signals in the biotope. Behav Proc 8:125–145

    Article  CAS  Google Scholar 

  • Keuper A, Otto C, Latimer W, Schatral A (1985) Airborne sound and vibration signals of bushcrickets and locusts; their importance for the behaviour in the biotope. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Paul Parey, Berlin Hamburg, pp 135–142

    Google Scholar 

  • Kočárek P (2010) Substrate-borne vibrations as a component of intraspecific communication in the groundhopper Tetrix ceperoi. J Insect Behav 23:348–363

    Article  Google Scholar 

  • Kočárek P, Holuša J, Grucmanová Š, Musiolek D (2011) Biology of Tetrix bolivari (Orthoptera: Tetrigidae). Centr Eur J Biol 6:531–544

    Article  Google Scholar 

  • Kuenzi F, Burrows M (1995) Central connections of sensory neurones from a hair plate proprioceptor in the thoraco-coxal joint of the locust. J Exp Biol 198:1589–1601

    CAS  PubMed  Google Scholar 

  • Kühne R (1982a) Neurophysiology of the vibration sense in locusts and bushcrickets: Response characteristics of single receptor units. J Insect Physiol 28:155–163

    Article  Google Scholar 

  • Kühne R (1982b) Neurophysiology of the vibration sense in locusts and bushcrickets: The responses of ventral-cord neurones. J Insect Physiol 28:615–623

    Article  Google Scholar 

  • Kühne R, Silver S, Lewis B (1984) Processing of vibratory and acoustic signals by ventral cord neurones in the cricket Gryllus campestris. J Insect Physiol 30:575–585

    Article  Google Scholar 

  • Kühne R, Silver S, Lewis B (1985) Processing of vibratory signals in the central nervous system of the cricket. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Paul Parey, Berlin Hamburg, pp 183–190

    Google Scholar 

  • Lakes R, Schikorski T (1990) The neuroanatomy of tettigoniids. In: Bailey WJ, Rentz WJ (eds) The Tettigoniidae: Biology, systematics and evolution. Crawford House Press, Bathurst, pp 167–190

    Google Scholar 

  • Latimer W, Schatral A (1983) The acoustic behaviour of the katydid Tettigonia cantans I. Behavioural responses to sound and vibration. Behav Process 8:113–124

    Article  CAS  Google Scholar 

  • Loher W, Chandrashekaran MK (1970) Acoustical and sexual behaviour in the grasshopper Chimarocephala pacifica pacifica (Oedipodinae). Ent Exp Appl 13:71–84

    Article  Google Scholar 

  • McNett G, Luan LH, Cocroft RG (2010) Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behav Ecol Sociobiol 64:2043–2051

    Article  Google Scholar 

  • McVean A, Field LH (1996) Communication by substratum vibration in the New Zealand tree weta, Hemideina femorata (Stenopelmatidae: Orthoptera). J Zool 239:101–122

    Article  Google Scholar 

  • Morris GK (1980) Calling display and mating behaviour of Copiphora rhinoceros Pictet (Orthoptera: Tettigoniidae). Anim Behav 28:42–51

    Article  Google Scholar 

  • Morris GK, Mason AC, Wall P, Belwood JJ (1994) High ultrasonic and tremulation signals in neotropical katydids (Orthoptera, Tettigoniidae). J Zool 233:129–163

    Article  Google Scholar 

  • Mücke A (1989) Das Periphere Nervensystem und die Zentralprojektion der Rezeptoren intakter und regenerierten Beine von Schistocerca gregaria und Locusta migratoria. Dissertation, Phillips Universität Marburg

    Google Scholar 

  • Mücke A, Lakes-Harlan R (1995) Central projections of sensory cells of the midleg of the locust, Schistocerca gregaria. Cell Tiss Res 280:391–400

    Article  Google Scholar 

  • Nebeling B (2000) Morphology and physiology of auditory and vibratory ascending interneurones in bushcrickets. J Exp Zool 286:219–230

    Article  CAS  PubMed  Google Scholar 

  • Nishino H (2000) Topographic mapping of the axons of the femoral chordotonal organ neurons in the cricket Gryllus bimaculatus. J Comp Physiol A 299:145–157

    CAS  Google Scholar 

  • Nishino H (2003) Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: I. Femoral chordotonal organ. J Comp Neurol 464:312–326

    Article  Google Scholar 

  • Nishino H, Field LH (2003) Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: II. Complex tibial organ. J Comp Neurol 464:327–342

    Article  Google Scholar 

  • Nishino S, Sakai M (1997) Three neural groups in the femoral chordotonal organ of the cricket Gryllus bimaculatus: central projections and soma arrangement and displacement during joint flexion. J Exp Biol 200:2583–2595

    CAS  PubMed  Google Scholar 

  • Nolen TG, Hoy RR (1984) Initiation of behavior by single neurons: the role of behavioral context. Science 226:992–994

    Article  CAS  PubMed  Google Scholar 

  • Pflüger HJ, Bräunig P, Hustert R (1988) The organization of mechanosensory neuropils in locust thoracic ganglia. Phil Trans R Soc Lond B 321:1–26

    Article  Google Scholar 

  • Riede K (1987) A comparative study of mating behaviour in some neotropical grasshoppers (Acridoidea). Ethology 76:265–296

    Article  Google Scholar 

  • Römer H (1987) Representation of the auditory distance within the central neuropile of the bushcricket Mygalopsis marki. J Comp Physiol A 161:33–42

    Article  Google Scholar 

  • Rössler W, Jatho M, Kalmring K (2006) The auditory-vibratory sensory system in bushcrickets. In: Drosopoulos S, Claridge MF (ed) Insect sounds and communication. Physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, pp 35–69

    Google Scholar 

  • Schatral A, Kalmring K (1985) The role of song for spatial dispersion and agonistic contacts of male bushcrickets. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Paul Parey, Berlin Hamburg, pp 111–116

    Google Scholar 

  • Sickmann T (1996) Vergleichende funktionelle und anatomische Untersuchung zum Aufbau der Hör- und Vibrationsbahn im thorakalen Bauchmark von Laubheuschrecken. Dissertation, Philipps-Universität Marburg

    Google Scholar 

  • Silver S, Kalmring K, Kühne R (1980) The responses of central acoustic and vibratory interneurones in bushcrickets and locusts to ultrasonic stimulation. Physiol Entomol 5:427–435

    Article  Google Scholar 

  • Strauss J, Lakes-Harlan R (2008a) Neuroanatomy and physiology of the complex tibial organ of an atympanate ensiferan, Ametrus tibialis (Brunner von Wattenwyl 1888) (Gryllacrididae, Orthoptera) and evolutionary implications. Brain Behav Evol 71:167–180

    Article  PubMed  Google Scholar 

  • Strauss J, Lakes-Harlan R (2008b) Neuroanatomy of the complex tibial organ of Stenopelmatus (Orthoptera: Ensifera: Stenopelmatidae). J Comp Neurol 511:81–91

    Article  PubMed  Google Scholar 

  • Strauss J, Lakes-Harlan R (2010) Neuroanatomy of the complex tibial organ in the splay-footed cricket Comicus calcaris Irish 1986 (Orthoptera: Ensifera: Schizodactylidae). J Comp Neurol 518:4567–4580

    Article  PubMed  Google Scholar 

  • Stritih N (2006) Response properties, morphology and topographical organisation of the vibratory neurones in the prothoracic ganglion of the cave cricket Troglophilus neglectus Krauss (Orthoptera, Rhaphidophoridae). Dissertation, University of Ljubljana

    Google Scholar 

  • Stritih N (2009) Anatomy and physiology of a set of low-frequency vibratory interneurons in a nonhearing ensiferan (Troglophilus neglectus, Rhaphidophoridae). J Comp Neurol 516:519–532

    Article  PubMed  Google Scholar 

  • Stritih N, Čokl A (2012) Mating behaviour and vibratory signalling in non-hearing cave crickets reflect primitive communication of Ensifera. PloS one (7)10:e47646

    Google Scholar 

  • Stritih N, Stumpner A (2009) Vibratory interneurons of the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera. Zoology 112:48–68

    Article  PubMed  Google Scholar 

  • Stumpner A (1996) Tonotopic organisation of the hearing organ in a bushcricket. Physiological characterisation and complete staining of auditory receptor cells. Naturwissenschaften 83:81–84

    CAS  Google Scholar 

  • Stumpner A (2002) A species-specific frequency filter through specific inhibition, not specific excitation. J Comp Physiol A 188:239–248

    Article  CAS  Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Article  Google Scholar 

  • Weidemann S, Keuper A (1987) Influence of vibratory signals on the phonotaxis of the gryllid Gryllus bimaculatus DeGeer (Ensifera: Gryllidae). Oecologia 74:316–318

    Article  Google Scholar 

  • Weissman DB (2001) Communication and reproductive behaviour in North American Jerusalem crickets (Stenopelmatus) (Orthoptera: Stenopelmatidae). In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Oxon, pp 351–375

    Chapter  Google Scholar 

  • Wohlers DW, Huber F (1985) Topographical organisation of the auditory pathway within the prothoracic ganglion of the cricket, Gryllus campestris L. Cell Tiss Res 239:555–565

    Article  Google Scholar 

  • Zill S, Ridgel A, DiCaprio R, Frazier S (1999) Load signalling by cockroach trochanteral campaniform sensilla. Brain Res 822:271–275

    Article  CAS  PubMed  Google Scholar 

  • Žunič A, Čokl A, Virant-Doberlet M, Millar JG (2008) Communication with signals produced by abdominal vibration, tremulation, and percussion in Podisus maculiventris (Heteroptera: Pentatomidae). Ann Entomol Soc Am 101:1169–1178

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Slovene Ministry for Science and the Slovenian Research Agency for long-term financial support of our research. A part of the work was also covered by the grant Marie Curie Training Sites, Neuronal signals and development (Qualities of life program of the European union, QLGA-1999-51322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Stritih .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stritih, N., Čokl, A. (2014). The Role of Frequency in Vibrational Communication of Orthoptera. In: Cocroft, R., Gogala, M., Hill, P., Wessel, A. (eds) Studying Vibrational Communication. Animal Signals and Communication, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_19

Download citation

Publish with us

Policies and ethics