Skip to main content

Communication Through Plants in a Narrow Frequency Window

  • Chapter
  • First Online:
Studying Vibrational Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 3))

Abstract

Different vibration-producing mechanisms determine frequency characteristics of insect communication signals transmitted through plants. Plant-dwelling stinkbugs (Heteroptera: Pentatomidae) communicate with the substrate-borne component of the vibratory emissions produced by tremulation of the whole body, tremulation of the abdomen or wings, and percussion. The main characteristics of signals produced by the mechanisms mentioned are their dominant component around 100 Hz, a different number of higher harmonics generally not exceeding 1,000 Hz and different degrees of frequency modulation. Higher-frequency components of the low-amplitude percussion signals are strongly attenuated during transmission through herbaceous plants. Stinkbug non-species-specific, low-frequency and narrow-band signal characteristics are tuned with plants as their main communication media. Herbaceous plants act as low-pass filters that optimally transmit signals of dominant frequency around 100 Hz and attenuate those above 600 Hz. Narrow-band low-frequency stinkbug vibratory signals are transmitted through stems with regularly repeated peaks of velocity minima and maxima caused by resonance. The stinkbug sensory system with underlying neuronal network effectively codes the inner frequency structure of signals produced by different mechanisms. Communication through a narrow-band frequency range on the one hand efficiently increases signal-to-noise ratio but on the other hand does not allow evolution of signals with species-specific frequency character.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amon T (1990) Electrical brain stimulation elicits singing in the bug Nezara viridula. Naturwissenschaften 77:291–292

    Article  Google Scholar 

  • Bagwell GJ, Čokl A, Millar JG (2008) Characterization and comparison of the substrate-borne vibrational signals of Chlorochroa uhleri, C. ligata and C. sayi. Ann Entomol Soc Am 101:235–246

    Article  Google Scholar 

  • Barth FG (1997) Vibrational communication in spiders: adaptation and compromise at many levels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhauser Verlag, Basel, pp 247–272

    Chapter  Google Scholar 

  • Barth FG (1998) The vibrational sense in spiders. In: Popper RR, Fay AN (eds) Handbook of auditory research. Comparative hearing in insects. Springer, New York, pp 228–278

    Chapter  Google Scholar 

  • Barth FG (2002) A spider’s world: senses and behavior. Springer, Berlin

    Book  Google Scholar 

  • Barth FG, Bleckmann H, Bohnenberger J, Seyfarth EA (1988) Spiders of the genus Cupiennius Simon 1891 (Aranea, Ctenidae), II: on the vibratory environment of a wandering spider. Oecologia 77:194–201

    Article  Google Scholar 

  • Bennet-Clark HC (1998) Size and scale effects as constraints in insect sound communication. Philos Trans R Soc B 353:407–419

    Article  Google Scholar 

  • Blassioli-Moraes MC, Laumann RA, Čokl A, Borges M (2005) Vibratory signals of four neotropical stink bug species. Physiol Entomol 30:175–188

    Article  Google Scholar 

  • Borges M, Jepson PC, Howse PE (1987) Long-range mate location and close-range courtship behaviour of the green stink bug, Nezara viridula and its mediation by sex pheromone. Entomol Exp Appl 44:205–212

    Article  CAS  Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Brumm H, Slabbekorn H (2005) Acoustic communication in noise. Adv Stud Behav 35:151–209

    Article  Google Scholar 

  • Casas J, Bacher S, Tautz J, Meyhöfer R, Pierre D (1998) Leaf vibrations and air movements in a leafminer–parasitoid system. Biol Control 11:147–153

    Article  Google Scholar 

  • Casas J, Magal C, Sueur J (2007) Dispersive and non-dispersive waves through plants: implications for arthropod vibratory communication. Proc R Soc B Biol 274:1087–1092

    Article  Google Scholar 

  • Cocroft RB (2000) Directionality in the mechanical response to substrate vibration in a treehopper (Hemiptera: Membracidae: Umbonia crassicornis). J Comp Physiol A 186:695–705

    Article  CAS  PubMed  Google Scholar 

  • Cocroft RB, McNett GD (2006) Vibrational communication in treehoppers (Hemiptera: Membracidae). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC Taylor & Francis, Boca Raton, pp 2305–2317

    Google Scholar 

  • Cocroft RG, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55(4):323–334

    Article  Google Scholar 

  • Čokl A (1983) Functional properties of vibroreceptors in the legs of Nezara viridula (L.) (Heteroptera, Pentatomidae). J Comp Physiol 150:261–269

    Article  Google Scholar 

  • Čokl A (1984) Problems in sound communication in land bug species Nezara viridula L. (Heteroptera, Pentatomidae). In: Kalmring K, Elsner N (eds) Acoustic and vibration communication in insects. Paul Parey, Hamburg, pp 163–168

    Google Scholar 

  • Čokl A (1988) Vibratory signal transmission in plants as measured by laser vibrometry. Period Biol 90:193–196

    Google Scholar 

  • Čokl A (2008) Stink bug interaction with host plants during communication. J Insect Physiol 54:1113–1124

    Article  PubMed  Google Scholar 

  • Čokl A, Amon T (1980) Vibratory interneurons in the central nervous system of Nezara viridula L. (Pentatomidae, Heteroptera). J Comp Physiol 139:87–95

    Article  Google Scholar 

  • Čokl A, Millar JG (2009) Manipulation of insect signalling for monitoring and control of pest insects. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests: application and resistance management. Springer, Dordrecht, pp 279–316

    Google Scholar 

  • Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50

    Article  PubMed  Google Scholar 

  • Čokl A, Virant-Doberlet M, Stritih N (2000) The structure and function of songs emitted by the southern green stink bugs from Brazil, Florida, Italy and Slovenia. Physiol Entomol 25:196–205

    Article  Google Scholar 

  • Čokl A, Prešern J, Virant-Doberlet M, Bagwell GJ, Millar JG (2004) Vibratory signals of the harlequin bug and their transmission through plants. Physiol Entomol 29:372–380

    Article  Google Scholar 

  • Čokl A, Zorović M, Žunič A, Virant-Doberlet M (2005) Tuning of host plants with vibratory songs of Nezara viridula L. Heteroptera: Pentatomidae). J Exp Biol 208:1481–1488

    Article  PubMed  Google Scholar 

  • Čokl A, Virant-Doberlet M, Zorović M (2006a) Sense organs Involved in the vibratory communication of bugs. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC Taylor & Francis, Boca Raton, pp 71–80

    Google Scholar 

  • Čokl A, Nardi C, Bento JMS, Hirose E, Panizzi AR (2006b) Transmission of stridulatory signals of the burrower bugs, Scaptocoris castanea and Scaptocoris carvalhoi (Heteroptera: Cydnidae) through the soil and soybean. Physiol Entomol 31:371–381

    Article  Google Scholar 

  • Čokl A, Zorović M, Millar JG (2007) Vibrational communication along plants by the stink bugs Nezara viridula and Murgantia histrionica. Behav Process 75:40–54

    Article  Google Scholar 

  • Čokl A, Žunič A, Millar JG (2009) Transmission of Podisus maculiventris tremulatory signals through plants. Centr Eur J Biol 4:585–594

    Article  Google Scholar 

  • Čokl A, Žunič A, Virant-Doberlet M (2011) Predatory bug Picromerus bidens communicates at different frequency levels. Centr Eur J Biol 6:431–439

    Article  Google Scholar 

  • Cremer I, Heckl M, Ungar EE (1973) Structure-borne sound, structural vibrations and sound radiation at audio frequencies. Springer, Berlin

    Google Scholar 

  • De Luca PA, Morris GK (1998) Courtship communication in meadow katydids: female preference for large male vibrations. Behaviour 135:777–794

    Article  Google Scholar 

  • Debasieux P (1938) Organes scolopidiaux des pattes d’insectes. Cellule 47:77–202

    Google Scholar 

  • Devetak D, Gogala M, Čokl A (1978) A contribution to the physiology of vibration receptors in the bugs of the family Cydnidae. Biol Vestnik 26:131–139

    Google Scholar 

  • Devries PJ (1991) Call production by myrmecophilous riodinid and lycaenid butterfly caterpillars (Lepidoptera): morphological, acoustical, functional, and evolutionary patterns. Am Mus Novit 3025:1–23

    Google Scholar 

  • Drosopoulos S, Claridge MF (2006) Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC Taylor & Francis, Boca Raton, pp 1–532

    Google Scholar 

  • Eberhard M, Picker MD (2008) Vibrational communication in two sympatric species of Mantophasmatodea (Heelwalkers). J Insect Behav 21:240–257

    Article  Google Scholar 

  • Elias DO, Mason AC, Maddison WP, Hoy RR (2003) Seismic signals in a courting male jumping spider (Araneae: Salticidae). J Exp Biol 206:4029–4039

    Article  PubMed  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a leafhopper insect. PLoS ONE 6(5):e19692. doi:10.1371/journal.pone.0019692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evans TA, Ali JCS, Toledano E, McDowall L, Rakotonarivo S, Lenz M (2005) Termites assess wood size by using vibration signals. Proc Natl Acad Sci USA 102:3732–3737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ewing AW (1989) Mechanisms of sound production. In: Ewing AW (ed) Arthropod bioacoustics. Edinburgh University Press, Edinburgh, pp 17–57

    Google Scholar 

  • Gnatzy W, Kämper G (1990) Digger wasp against crickets: II. An airborne signal produced by a running predator. J Comp Pysiol 167:551–556

    Google Scholar 

  • Gogala M (1984) Vibration producing structures and songs of terrestrial Heteroptera as systematic character. Biol Vestnik 32:19–36

    Google Scholar 

  • Gogala M (2006) Vibratory signals produced by Heteroptera–Pentatomorpha and Cimicomorpha. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC Taylor & Francis, Boca Raton, pp 275–296

    Google Scholar 

  • Gogala M, Razpotnik R (1974) A method of oscillographic sonagraphy for bio-acoustic research. Biol Vestnik 22:209–216

    Google Scholar 

  • Greenfield MD (1994) Cooperation and conflict in the evolution of signal interactions. Annu Rev Ecol Syst 25:97–126

    Article  Google Scholar 

  • Greenfield MD (2002) Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, Oxford

    Google Scholar 

  • Howard RD, Young RJ (1998) Individual variation in male vocal trials and female mating preferences in Bufo americanus. Anim Behav 55:1165–1179

    Article  PubMed  Google Scholar 

  • Huber F, Moore TE, Loher W (1989) Cricket behaviour and neurobiology. Cornell University Press, Ithaca

    Google Scholar 

  • Jeram S (1993) Anatomical and physiological properties of antennal mechanoreceptors of the bug species Nezara viridula (L.) (Pentatomidae, Heteroptera). MSc thesis, University of Ljubljana, Ljubljana

    Google Scholar 

  • Jeram S (1996) Structure and function of Johnston’s organ in the bug species Nezara viridula (L.) (Pentatomidae, Heteroptera). PhD thesis, University of Ljubljana, Ljubljana

    Google Scholar 

  • Jeram S, Čokl A (1996) Mechanoreceptors in insects: Johnston’s organ in Nezara viridula (L.) (Pentatomidae, Heteroptera). Pflügers Archiv 431(Suppl.):R281

    Google Scholar 

  • Jeram S, Pabst AM (1996) Johnston’s organ and central organ in Nezara viridula (L.) (Heteroptera, Pentatomidae). Tissue Cell 28:227–235

    Article  CAS  PubMed  Google Scholar 

  • Kavčič A, Čokl A, Laumann RA, Moraes MCB, Borges M (2013) Tremulatory and abdomen vibration signals enable communication through air in the stink bug Eushistus heros. PLoS ONE 8(2):1–10

    Google Scholar 

  • Keuper A, Kühne R (1983) The acoustic behaviour of the bushcricket Tettigonia cantans. II. Transmission of airborne-sound and vibration signals in the biotope. Behav Process 8:125–145

    Article  CAS  Google Scholar 

  • Kiritani KN, Kimura K, Nakasuji F (1965) Imaginal dispersal of the southern green stink bug, Nezara viridula L., in relation to feeding and oviposition. Jpn J Appl Entomol Zool 9:291–297

    Article  Google Scholar 

  • Kühne R (1982) Neurophysiology of the vibration sense in locusts and bushcrickets: response characteristics of single receptor units. J Insect Physiol 28:155–163

    Article  Google Scholar 

  • Kuštor V (1989) Activity of muscles of the vibration producing organ of the bug Nezara viridula. MSc thesis, University of Ljubljana, Ljubljana

    Google Scholar 

  • Laumann RA, Kavčič A, Moraes MCB, Borges M, Čokl A (2013) Reproductive behaviour and vibratory communication of the neotropical predatory stink bug Podisus nigrispinus. Physiol Entomol 38:71–80

    Article  Google Scholar 

  • Maluf NSR (1932) The skeletal motor mechanism of the thorax of the “stink bug” Nezara viridula L. Bull Soc R Ent Egypt 16:161–203

    Google Scholar 

  • Manabe K (1997) Various modifications of vocalization by operant conditioning. Biomed Res 18:125–132

    Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioural physiology. Roots and growing points. Springer, Berlin, pp 332–353

    Google Scholar 

  • McBrien HL, Millar JG (2003) Substrate-borne vibrational signals of the consperse stink bug (Hemiptera: Pentatomidae). Can Entomol 135:555–567

    Article  Google Scholar 

  • McNett GD, Cocroft RB (2008) Host shifts favour vibrational signal divergence in Enchenopa binotata treehoppers. Behav Ecol 19:650–656

    Article  Google Scholar 

  • McNett GD, Miles RN, Homentcovschi F, Cocroft RB (2006) A method for two-dimensional characterization of animal vibrational signals transmitted along plant stems. J Comp Physiol A 192:1245–1251

    Article  Google Scholar 

  • McNett G, Luan LH, Cocroft RG (2010) Wind-induced noise alters signaller and receiver behavior in vibrational communication. Behav Ecol Sociobiol 64:2043–2051

    Article  Google Scholar 

  • McVean A, Field LH (1996) Communication by substratum vibration in the New Zealand tree weta, Hemideina femorata (Stenopelmatidae: Orthoptera). J Zool 239:101–122

    Article  Google Scholar 

  • Michel K, Amon T, Čokl A (1983) The morphology of the leg scolopidial organs in Nezara viridula (L.) (Heteroptera, Pentatomidae). Rev Can Biol Exp 42:130–150

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Article  Google Scholar 

  • Miklas N, Stritih N, Čokl A, Virant-Doberlet M, Renou M (2001) The influence of substrate on male responsiveness to the female calling song in Nezara viridula. J Insect Behav 14:313–332

    Article  Google Scholar 

  • Miles RN, Cocroft RB, Gibbons C, Batt D (2001) A bending wave simulator for investigating directional vibration sensing in insects. J Acoust Soc Am 110:579–587

    Article  CAS  PubMed  Google Scholar 

  • Ota D, Čokl A (1991) Mate location in the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae) mediated through substrate-borne signals on ivy. J Insect Behav 4:441–447

    Article  Google Scholar 

  • Panizzi AR (1997) Wild hosts of pentatomids: ecological significance and role in their pest status on crops. Annu Rev Entomol 42:99–122

    Article  CAS  PubMed  Google Scholar 

  • Panizzi AR, McPherson JE, James DG, Javahery M, McPherson RM (2000) Stink bugs (Pentatomidae). In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC Press, Boca Raton, p 828

    Google Scholar 

  • Polajnar J, Čokl A (2008) The effect of vibratory disturbance on sexual behaviour of the southern green stink bug Nezara viridula (Heteroptera, Pentatomidae). Centr Europ J Biol 3:189–197

    Article  Google Scholar 

  • Polajnar J, Svenšek D, Čokl A (2012) Resonance in herbaceous plant stems as a factor in vibrational communication of pentatomid bugs (Heteroptera: Pentatomidae). J R Soc Interf 9:1898–1907

    Article  Google Scholar 

  • Rodríguez RL, Ramaswamy K, Cocroft RB (2006) Evidence that female preferences have shaped male signal evolution in a clade of specialized plant-feeding insects. Proc R Soc B Biol 273:2585–2593

    Article  Google Scholar 

  • Ryan MA, Čokl A, Walter GH (1996) Differences in vibratory communication between a Slovenian and Australian population of Nezara viridula (L.) (Heteroptera: Pentatomidae). Behav Process 36:183–193

    Article  CAS  Google Scholar 

  • Schoonhoven LM, Jermy T, van Loon JJA (1998) Insect–plant biology: from physiology to evolution. Chapman & Hall, London, p 409

    Google Scholar 

  • Shaw SR (1994) Detection of airborne sound by a cockroach vibration detector: a possible missing link in insect auditory evolution. J Exp Biol 193:13–47

    PubMed  Google Scholar 

  • Slabbekoorn H, Peet M (2003) Birds sing at a higher pitch in urban noise. Nature 424:267

    Article  CAS  PubMed  Google Scholar 

  • Stölting H, Moore TE, Lakes-Harlan R (2002) Substrate vibrations during acoustic signalling in the cicada Okanagana rimosa. J Insect Sci 2:1–7

    Article  Google Scholar 

  • Todd JW (1989) Ecology and behaviour of Nezara viridula. Annu Rev Entomol 34:273–292

    Article  Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Article  Google Scholar 

  • Virant-Doberlet M, Čokl A, Zorović M (2006) Use of substrate vibrations for orientation: from behaviour to physiology. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC Taylor & Francis, Boca Raton, pp 81–98

    Google Scholar 

  • White PR, Birch MC, Church S, Jay S, Rowe E, Keenlyside JJ (1993) Intraspecific variability in the tapping behavior of the deathwatch beetle, Xestobium rufovillosum (Coleoptera, Anobiidae). J Insect Behav 6:549–562

    Article  Google Scholar 

  • Zorović M (2011) Temporal processing of vibratory communication signals at the level of ascending interneurons in Nezara viridula (Hemiptera: Pentatomidae). PLoS ONE 6:1–8. doi:10.1371/journal.pone.0026843

    Google Scholar 

  • Zorović M, Čokl A, Virant-Doberlet M (2004) The interneural network underlying vibrational communication in the green stink bug Nezara viridula (L.). In: Processing of the female calling song with application for orientation and species recognition. The 7th congress of the international society for neuroethology, program and abstracts, University of Southern Denmark, Odense, p 201

    Google Scholar 

  • Zorović M, Prešern J, Čokl A (2008) Morphology and physiology of vibratory interneurons in the thoracic ganglia of the southern green stinkbug Nezara viridula (L.). J Comp Neurol 508:365–381

    Article  PubMed  Google Scholar 

  • Žunič A, Čokl A, Virant-Doberlet M, Millar JG (2008) Communication with signals produced by abdominal vibration, tremulation, and percussion in Podisus maculiventris (Heteroptera: Pentatomidae). Ann Entomol Soc Am 101:1169–1178

    Article  Google Scholar 

  • Žunič A, Virant-Doberlet M, Čokl A (2011) Species recognition during substrate-borne communication in Nezara viridula (L.) (Pentatomidae: Heteroptera). J Insect Behav 24:468–487

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Čokl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Čokl, A., Zorović, M., Kosi, A.Ž., Stritih, N., Virant-Doberlet, M. (2014). Communication Through Plants in a Narrow Frequency Window. In: Cocroft, R., Gogala, M., Hill, P., Wessel, A. (eds) Studying Vibrational Communication. Animal Signals and Communication, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_10

Download citation

Publish with us

Policies and ethics