Skip to main content

The Vibrational Sense of Spiders

  • Chapter
Comparative Hearing: Insects

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 10))

Abstract

Sensory physiology, like other disciplines of science, tends to be biased toward the obviously spectacular and, of course, toward the sensory world we humans are living in. In this sense, spiders and their vibration sense may seem to be a rather exotic topic to study. Animals, however, look at the world through windows that may differ drastically from our own. At first sight the spectacular may not be obvious to us at all. Hopefully, this chapter will convince the reader that studying such seemingly aberrant subjects as spiders is well worth the effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anton S, Barth FG (1993) Central nervous projection patterns of trichobothria and other cuticular sensilla in the wandering spider Cupiennius salei (Arachnida, Araneae). Zoomorphology 113:21–32.

    Google Scholar 

  • Autrum H (1941) Über Gehör-und Erschütterungssinn bei Locustiden. Z Vergl Physiol 28:580–637.

    Google Scholar 

  • Babu KS, Barth FG (1989) Central nervous projections of mechanoreceptors in the spider Cupiennius salei KEYS. Cell Tissue Res 258:69–82.

    Google Scholar 

  • Babu KS, Barth FG, Strausfeld NJ (1985) Intersegmental sensory tracts and contralateral motor neurons in the leg ganglia of the spider Cupiennius salei KEYS. Cell Tissue Res 241:53–57.

    Google Scholar 

  • Barth FG (1971) Der sensorische Apparat der Spaltsinnesorgane (Cupiennius salei Keys., Araneae). Z Zellforsch 112:212–246.

    PubMed  CAS  Google Scholar 

  • Barth FG (1972a) Die Physiologie der Spaltsinnesorgane. I. Modellversuche zur Rolle des cuticularen Spaltes beim Reiztransport. J Comp Physiol A 78:315–336.

    Google Scholar 

  • Barth FG (1972b) Die Physiologie der Spaltsinnesorgane. II. Funktionelle Morphologie eines Mechanoreceptors. J Comp Physiol A 81:159–186.

    Google Scholar 

  • Barth FG (1982) Spiders and vibratory signals: Sensory reception and behavioral significance. In: Witt PN, Rovner JS (eds) Spider Communication: Mechanisms and Ecological Significance. Princeton, NJ: Princeton University Press, pp. 67–122.

    Google Scholar 

  • Barth FG (1985a) Neuroethology of the spider vibration sense. In: Barth FG (ed) Neurobiology of Arachnids. Berlin: Springer-Verlag, pp. 203–229.

    Google Scholar 

  • Barth FG (1985b) Slit sensilla and the measurement of cuticular strains. In: Barth FG (ed) Neurobiology of Arachnids. Berlin: Springer-Verlag, pp. 162–188.

    Google Scholar 

  • Barth FG (1986) Vibrationssinn und vibratorische Umwelt von Spinnen. Naturwissenschaften 73:519–530.

    Google Scholar 

  • Barth FG (1993) Sensory guidance in spider pre-copulatory behavior. Comp Biochem Physiol 104A:717–733.

    Google Scholar 

  • Barth FG (1997) Vibratory communication in spiders: Adaptation and compromise at many levels. In: Lehrer M (ed) Orientation and Communication in Arthropods. Basel: Birkhäuser, pp. 247–272.

    Google Scholar 

  • Barth FG, Blickhan R (1984) Mechanoreception. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the Integument I. Invertebrates. Berlin: Springer-Verlag, pp. 544–582.

    Google Scholar 

  • Barth FG, Bohnenberger J (1978) Lyriform slit sense organ: threshold and stimulus amplitude ranges in a multi-unit mechanoreceptor. J Comp Physiol A 125:37–43.

    Google Scholar 

  • Barth FG, Geethabali (1982) Spider vibration receptors. Threshold curves of indi-vidual slits in the metatarsal lyriform organ. J Comp Physiol A 148:175–185.

    Google Scholar 

  • Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane von Cupiennius salei Keys., Chelicerata (Araneae). Z Morph Tiere 68:343–369.

    Google Scholar 

  • Barth FG, Schmitt A (1991) Species recognition and species isolation in wandering spiders (Cupiennius spp.; Ctenidae). Behav Ecol Sociobiol 29:333–339.

    Google Scholar 

  • Barth FG, Seyfarth E-A, Bleckmann H, Schüch W (1988a) Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae). I. Range distribution, dwelling plants, and climatic characteristics of the habitats. Oecologia 77:187–193.

    Google Scholar 

  • Barth FG, Bleckmann H, Bohnenberger J, Seyfarth EA (1988b) Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae). II. On the vibratory environment of a wandering spider. Oecologia 77:194–201.

    Google Scholar 

  • Barth FG, Nakagawa T, Eguchi E (1993) Vision in the ctenid spider Cupiennius salei: spectral range and absolute sensitivity (ERG). J Exp Biol 181:63–79.

    Google Scholar 

  • Barth FG, Wastl U, Humphrey JAC, Devarakonda R (1993) Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria (Cupiennius salei Keys.). Philos Trans R Soc Lond B 340:445–461.

    Google Scholar 

  • Baurecht D, Barth FG (1991) Vibratory communication in spiders: receptor response to synthetic vibratory signals. In: Elsner N, Penzlin H (eds) Proceedings of the 19th Göttingen Neurobiology Conference. Stuttgart: Thieme, p. 133.

    Google Scholar 

  • Baurecht D, Barth FG (1992) Vibratory communication in spiders. I. Representation of male courtship signals by female vibration receptor. J Comp Physiol A 171:231–243.

    Google Scholar 

  • Baurecht D, Barth FG (1993) Vibratory communication in spiders. II. Representation of parameters contained in synthetic male courtship signals by female vibration receptor. J Comp Physiol A 173:309–319.

    Google Scholar 

  • Berestyñska-Wilczek M (1962) Investigations of the sensitivity of the spider Pirata piraticus (Clerck) to vibrations of the water surface. Acta Biol Cracowiensia 5:263–277.

    Google Scholar 

  • Bleckmann H (1988) Prey identification and prey localization in surface-feeding fish and fishing spider. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 619–642.

    Google Scholar 

  • Bleckmann H (1994) Reception of Hydrodynamic Stimuli in Aquatic and Semi-aquatic Animals. Stuttgart: G Fischer.

    Google Scholar 

  • Bleckmann H, Barth FG (1984) Sensory ecology of a semiaquatic spider (Dolomedes triton). II. The release of predatory behavior by water surface waves. Behav Ecol Sociobiol 14:303–312.

    Google Scholar 

  • Bleckmann H, Bender M (1987) Water surface waves generated by the male pisaurid spider Dolomedes triton during courtship behavior. J Arachnol 15:363–369.

    Google Scholar 

  • Bleckmann H, Borchardt M, Horn P, Görner P (1994) Stimulus discrimination and wave source localization in fishing spiders (Dolomedes triton and D. okefinokensis). J Comp Physiol A 174:305–316.

    Google Scholar 

  • Blest AD (1985) The fine structure of spider photoreceptors in relation to function. In: Barth FG (ed) Neurobiology of Arachnids. Berlin: Springer-Verlag, pp. 79–102.

    Google Scholar 

  • Bohnenberger I (1981) Matched transfer characteristics of single units in a com-pound slit sense organ. J Comp Physiol A 142:391–401.

    Google Scholar 

  • Braun R (1955) Zur Biologie von Teutana triangulosa. Z Wiss Zool 159:255–318.

    Google Scholar 

  • Brownell P, Farley RD (1979) Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis. J Comp Physiol A 131:23–30.

    Google Scholar 

  • Buchli HHR (1969) Hunting behavior in the Ctenizidae. Am Zool 9:175–193.

    Google Scholar 

  • Burgess W (1976) Social spiders. Sci Amer 234:100–106.

    PubMed  CAS  Google Scholar 

  • Calico JE (1973) The nearctic species of the genus Dolomedes (Araneae: Pisauridae) Bull Mus Comp Zool 144:435–488.

    Google Scholar 

  • Cremer L, Heckl M, Ungar EE (1973) Structure-Borne Sound. Berlin: Springer-Verlag.

    Google Scholar 

  • Dambach M (1989) Vibrational responses. In: Huber F, Moore TE, Loher W (eds) Cricket Behavior and Neurobiology. Ithaca, NY: Cornell University Press, pp. 178–197.

    Google Scholar 

  • Denny M (1976) The physical properties of spiders’ silk and their role in the design of orb-webs. J Exp Biol 65:483–506.

    Google Scholar 

  • Devetak D, Gogala M, Cokl A (1978) A contribution to the physiology of vibration receptors in the bugs of the family Cydnidae (Heteroptera). Biol Vestn 26:131–139.

    Google Scholar 

  • Dierkes S, Barth FG (1995) Mechanism of signal production in the vibratory communication of the wandering spider Cupiennius getazi (Arachnida, Araneae). J Comp Physiol A 176:31–44.

    Google Scholar 

  • Dorward PK, McIntyre AK (1971) Responses of vibration-sensitive receptors on the interosseus region of the duck’s hind limb. J Physiol 219:77–87.

    PubMed  CAS  Google Scholar 

  • Ewing AW (1989) Arthropod Bioacoustics. Neurobiology and Behavior. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Forster L (1985) Target discrimination in jumping spiders (Araneae: Salticidae). In: Barth FG (ed) Neurobiology of Arachnids. Berlin: Springer-Verlag, pp. 249–274.

    Google Scholar 

  • Friedel T, Barth FG (1995) Responses of female interneurons to male courtship vibrations in a spider (Cupiennius salei Keys., Ctenidae). J Comp Physiol A 177:159–171.

    Google Scholar 

  • Frohlich C, Buskirk RE (1982) Transmission and attenuation of vibration in orb spider webs. J Theor Biol 95:13–36.

    Google Scholar 

  • Gogala M (1985) Vibrational communication in insects (biophysical and behavioral aspects). In: Kalmring K, Elsner N (eds) Acoustic and Vibrational Communication in Insects. Berlin: Parey, pp. 117–126.

    Google Scholar 

  • Graeser K (1973) Die Übertragungseigenschaften des Netzes von Zygiella x-notata (Clerck) für transversale Sinusschwingungen im niederen Frequenzbereich und Frequenzanalyse beutetiererregter Netzvibrationen. Diplomarbeit, Universität Frankfurt, Frankfurt am Main.

    Google Scholar 

  • Grassé P (ed) (1949) Traité de Zoologie. Tome VI. Paris: Masson et Cie.

    Google Scholar 

  • Gregory JE, McIntyre AK, Proske U (1986) Vibration-evoked responses from lamellated corpuscles in the legs of kangaroos. Exp Brain Res 62:648–653.

    PubMed  CAS  Google Scholar 

  • Gwinner-Hanke H (1970) Zum Verhalten zweier stridulierender Spinnen, Steatoda bipunctata Linné und Teutana grossa Koch (Theridiidae, Araneae), unter besonderer Berücksichtigung des Fortpflanzungsverhaltens. Z Tierpsychol 27:649–678.

    Google Scholar 

  • Harrison JB (1969) Acoustic behavior of a wolf spider, Lycosa gulosa. Anim Behav 17:14–16.

    Google Scholar 

  • Henschel JR, Lubin YD (1992) Environmental factors affecting the web and activity of a psammophilous spider in the Namib Desert. J Arid Environ 22:173–189.

    Google Scholar 

  • Hergenröder R, Barth FG (1983a) The release of attack and escape behavior by vibratory stimuli in a wandering spider (Cupiennius salei Keys.). J Comp Physiol A 152:347–358.

    Google Scholar 

  • Hergenröder R, Barth FG (1983b) Vibratory signals and spider behavior: How do the sensory inputs from the eight legs interact in orientation? J Comp Physiol A 152:361–371.

    Google Scholar 

  • Horch KW, Salmon M (1969) Production, perception and reception of acoustic stimuli by semiterrestrial crabs (genus Ocypode and Uca, family Ocypodidae). Forma et Functio 1:1–25.

    Google Scholar 

  • Höster W (1990) Vibrational sensitivity of the wing of the pigeon (Columba livia) —a study using heart rate conditioning. J Comp Physiol A 167:545–549.

    Google Scholar 

  • Hudspeth AJ (1985) The cellular basis of hearing: the biophysics of hair cells. Science 230:745–752.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404.

    PubMed  CAS  Google Scholar 

  • Kalmring K, Elsner N (1985) Acoustic and Vibrational Communication in Insects. Berlin: Parey.

    Google Scholar 

  • Kalmring K, Lewis B, Eichendorf A (1978) The physiological characteristics of primary sensory neurons of the complex tibial organ of Decticus verrucivorus L. (Orthoptera, Tettigonioidae). J Comp Physiol A 127:109–121.

    Google Scholar 

  • Kämper A, Kühne R (1983) The acoustic behavior of the bushcricket Tettigonia cantans. II. Transmission of airborne sound and vibration signals in the biotope. Behav Proc 8:125–145.

    Google Scholar 

  • Kaston BJ (1936) The senses involved in the courtship of some vagabond spiders. Entomol Am 16:97–167.

    Google Scholar 

  • Keidel WD (1956) Vibrationsreception. Der Erschütterungssinn des Menschen. Erlangen Forschungen, Reihe B: Naturwissenschaften, Bd. 2. Erlangen, Univ. Bibliothek.

    Google Scholar 

  • Klärner D, Barth FG (1982) Vibratory signals and prey capture in orb-weaving spiders (Zygiella x-notata, Nephila clavipes; Araneidae). J Comp Physiol A 148:445–455.

    Google Scholar 

  • Köhler D, Tembrock G (1987) Akustische Signale der Wolfsspinne Hygrolycosa rubrofasciata (Arachnida: Lycosidae). Zool Anz 219:147–153.

    Google Scholar 

  • Konigswald A, Lubin Y, Ward D (1990) The effectiveness of the nest of a desert widow spider, Latrodectus revivensis in predator deterrence. Psyche 97:75–80.

    Google Scholar 

  • Kronestedt T (1973) Study of a stridulatory apparatus in Pardosa fulvipes (Collett) (Araneae, Lycosidae) by scanning electron microscopy. Zool Scripta 2:43–47.

    Google Scholar 

  • Kullmann E (1972) The convergent development of orb-webs in cribellate and ecribellate spiders. Am Zool 12:395–405.

    Google Scholar 

  • Kullmann E, Otto F, Braun T, Raccanello R (1975) Fundamentals and classification — A survey of spider net constructions. In: IL 8, Netze in Natur und Technik. Stuttgart: Mitt Inst Leichte Flächentragwerke.

    Google Scholar 

  • Land MF (1985) The morphology and optics of spider eyes. In: Barth FG (ed) Neurobiology of Arachnids. Berlin: Springer-Verlag, pp. 53–78.

    Google Scholar 

  • Landolfa MA, Barth FG (1996) Vibrations in the orb web of the spider Nephila clavipes. Cues for discrimination and orientation. J Comp Physiol A, 179:493–508.

    Google Scholar 

  • Lang HH (1980) Surface wave discrimination between prey and nonprey by the backswimmer Notonecta glauca L (Hemiptera, Heteroptera). Behav Ecol Sociobiol 6:233–246.

    Google Scholar 

  • Legendre R (1963) L’audition et l’emission de sons chez les Aranéides. Ann Biol 2:371–390.

    Google Scholar 

  • Lewis ER, Narins PM (1985) Do frogs communicate with seismic signals? Science 227:187–189.

    PubMed  CAS  Google Scholar 

  • Liesenfeld FJ (1956) Untersuchungen am Netz und über den Erschütterungssinn von Zygiella x-notata (Cl.) (Araneidae). Z Vergl Physiol 38:563–592.

    Google Scholar 

  • Liesenfeld FJ (1961) Über Leistung und Sitz des Erschütterungssinnes von Netzspinnen. Biol Zbl 80:465–475.

    Google Scholar 

  • Lighthill J (1980) Waves in Fluids. Cambridge, UK: Cambridge University Press. Lucas F (1964) Spiders and their silks. Discovery 25:20–26.

    Google Scholar 

  • Main BY (1957) Adaptive radiation of trapdoor spiders. Austral Mus Mag 12:160–163.

    Google Scholar 

  • Markl H (1969) Verständigung durch Vibrationssignale bei Arthropoden. Naturwissenschaften 56:499–505.

    PubMed  CAS  Google Scholar 

  • Markl H (1973) Leistungen des Vibrationssinnes bei wirbellosen Tieren. Fortschritte d Zool 21:100–120.

    CAS  Google Scholar 

  • Markl H (1983) Vibratorial communication. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Heidelberg: Springer-Verlag, pp. 332–353.

    Google Scholar 

  • Marshall SD, Thoms EM, Uetz GW (1995) Setal entanglement: an undescribed method of stridulation by a neotropical tarantula (Araneae: Theraphosidae). J Zool Lond 235:587–595.

    Google Scholar 

  • Masters WM (1984a) Vibrations in the orb webs of Nuctenea sclopetaria (Araneidae). I. Transmission through the web. Behav Ecol Sociobiol 15:207–215.

    Google Scholar 

  • Masters WM (1984b) Vibrations in the orb webs of Nuctenea sclopetaria (Araneidae). II. Prey and wind signals and the spider’s response threshold. Behav Ecol Sociobiol 15:217–223.

    Google Scholar 

  • Masters WM, Markl H (1981) Vibration signal transmission in spider orb-webs. Science 213:363–365.

    PubMed  CAS  Google Scholar 

  • Masters WM, Markl HS, Moffat AJM (1986) Transmission of vibration in a spider’s web. In: Shear WA (ed) Spiders: Webs, Behavior and Evolution. Palo Alto, CA: Stanford University Press, pp. 49–69.

    Google Scholar 

  • McIntyre AK (1980) Biological seismography. Trends Neurosci Sept:202–205.

    Google Scholar 

  • Meyer E (1928) Neue Sinnesbiologische Beobachtungen an Spinnen. Z Morph Ökol Tiere 12:1–69.

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 2:269–281.

    Google Scholar 

  • Morse PM (1948) Vibration and Sound. New York: McGraw-Hill.

    Google Scholar 

  • Murphey RK (1973) Mutual inhibition and the organisation of a nonvisual orientation in Notonecta. J Comp Physiol A 84:31–69.

    Google Scholar 

  • Narins P (1995) Frog communication. Sci Amer 273:62–67.

    Google Scholar 

  • Narins P, Lewis ER (1984) The vertebrate ear as an exquisite seismic sensor. J Acoust Soc Am 76:1384–1387.

    CAS  Google Scholar 

  • Pickles JO, Corey DP (1992) Mechanotransduction by hair cells. Trends Neurosci 15:254–259.

    PubMed  CAS  Google Scholar 

  • Rayleigh Lord DCL (1885) On waves propagated along the plane surface of an elastic solid. Proc Math Soc Lond 17:4–11.

    Google Scholar 

  • Roemer van de A (1980) Eine vergleichende morphologische Untersuchung an dem für die Vibrationswahrnehmung wichtigen Distalbereich des Spinnenbeins. Diplomarbeit, Universität. Frankfurt, Frankfurt am Main.

    Google Scholar 

  • Roth E (1986) Vibratorische Balz von Cupiennius coccineus: zur ethologischen Bedeutung der Signale. Diplomarbeit, Universität. Frankfurt, Frankfurt am Main.

    Google Scholar 

  • Rovner JS (1967) Acoustic communication in a lycosid spider (Lycosa rabida Walckenaer) Anim Behav 15:273–281.

    PubMed  CAS  Google Scholar 

  • Rovner JS (1975) Sound production by Nearctic wolf spiders: a substratum-coupled stridulatory mechanism. Science 190:1309–1310.

    Google Scholar 

  • Rovner JS (1980) Vibration in Heteropoda venatoria (Sparassidae): a third method of sound production in spiders. J Arachnol 8:193–200.

    Google Scholar 

  • Rovner JS, Barth FG (1981) Vibratory communication through living plants by a tropical wandering spider. Science 214:464–466.

    PubMed  CAS  Google Scholar 

  • Schmitt A, Schuster M, Barth FG (1992) Male competition in a wandering spider (Cupiennius getazi, Ctenidae). Ethology 90:293–306.

    Google Scholar 

  • Schmitt A, Schuster M, Barth FG (1994) Vibratory communication in a wandering spider (Cupiennius getazi, Ctenidae): female and male preferences for various features of the conspecific male’s releaser. Anim Behav 48:1155–1171.

    Google Scholar 

  • Schnorbus H (1971) Die subgenualen Sinnesorgane von Periplaneta americana: Histologie und Virationsschwellen. Z Vergl Physiol 71:14–48.

    Google Scholar 

  • Schüch W, Barth FG (1985) Temporal patterns in the vibratory courtship signals of the wandering spider Cupiennius salei Keys. Behav Ecol Sociobiol 16:263–271.

    Google Scholar 

  • Schüch W, Barth FG (1990) Vibratory communication in a spider: female responses to synthetic male vibrations. J Comp Physiol A 166:817–826.

    Google Scholar 

  • Schwartzkopff J (1948) Der Vibrationssinn der Vögel. Naturwissenschaften 35:318–319.

    Google Scholar 

  • Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J Acoust Soc Am 72:131–141.

    PubMed  CAS  Google Scholar 

  • Seyfarth E-A, French AS (1994) Intracellular characterization of identified sensory cells in a new spider mechanoreceptor preparation. J Neurophysiol 71:1422–1427.

    PubMed  CAS  Google Scholar 

  • Shaw SR (1994) Re-evaluation of the absolute threshold and response mode of the most sensitive known “vibration” detector, the cockroach’s subgenual organ: a cochlea-like displacement threshold and a direct response to sound. J Neurobiol 25:1167–1185.

    PubMed  CAS  Google Scholar 

  • Shear WA (1986) (ed) Spiders: Webs, Behavior, and Evolution. Palo Alto, CA: Stanford University Press.

    Google Scholar 

  • Shimizu I, Barth FG (1996) The effect of temperature on the temporal structure of the vibratory courtship signal of a spider (Cupiennius salei Keys.). J Comp Physiol A 179:363–370.

    Google Scholar 

  • Sivian LJ, White SD (1933) On minimum audible sound fields. J Acoust Soc Am 4:288–321.

    Google Scholar 

  • Skudrzyk E (1971) The Foundations of Acoustics. Vienna: Springer-Verlag.

    Google Scholar 

  • Sommerfeld A (1970) Vorlesungen über theoretische Physik II. Mechanik der deformierbaren Medien. Leipzig: Akad Verlagsges.

    Google Scholar 

  • Speck J, Barth FG (1982) Vibration sensitivity of pretarsal slit sensilla in the spider leg. J Comp Physiol A 148:187–194.

    Google Scholar 

  • Speck-Hergenröder J (1984) Vibrationsempfindliche Interneurone im Zentralnervensystem der Spinne Cupiennius salei Keys. Ph.D. thesis, Universität Frankfurt, Frankfurt am Main.

    Google Scholar 

  • Speck-Hergenröder J, Barth FG (1987) Tuning of vibration sensitive neurons in the central nervous system of a wandering spider, Cupiennius salei Keys. J Comp Physiol A 160:467–475.

    Google Scholar 

  • Speck-Hergenröder J, Barth FG (1988) Vibration sensitive hairs on the spider leg. Experientia 44:13–14.

    Google Scholar 

  • Starck JM (1985) Stridulationsapparate einiger Spinnen — Morphologie und evolutionsbiologische Aspekte. Z Zool Syst Evolutionforsch 23:115–135.

    Google Scholar 

  • Stratton GE, Uetz GW (1983) Communication via substratum -- coupled stridulation and reproductive isolation in wolf spiders (Araneae: Lycosidae). Anim Behav 31:164–172.

    Google Scholar 

  • Strausfeld NJ, Barth FG (1993) Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. J Comp Neurol 328:43–62.

    PubMed  CAS  Google Scholar 

  • Szlep R (1965) The web spinning process and web structure of Latrodectus tredecimguttatus, L. pallidus and L. revivensis. Proc Zool Soc Lond 145:75–89.

    Google Scholar 

  • Tautz J (1979) Reception of particle oscillation in a medium. An unorthodox sensory capacity. Naturwissenschaften 66:452–461.

    Google Scholar 

  • Tautz J (1989) Medienbewegung in der Sinneswelt der Arthropoden. Fallstudien zu einer Sinnesökologie. Stuttgart: G Fischer.

    Google Scholar 

  • Tretzel E (1961) Biologie, Ökologie und Brutpflege von Coelotes terrestris (Wider) (Araneae: Agelenidae), II. Brutpflege. Z Morphol Ökol Tiere 50:375–524.

    Google Scholar 

  • Uetz GW, Stratton GE (1982) Acoustic communication and reproductive isolation in spiders. In: Witt PN, Rovner JS (eds) Spider Communication: Mechanisms and Ecological Significance. Princeton, NJ: Princeton University Press, pp. 123–159.

    Google Scholar 

  • Vollrath I (1979a) Behavior of the kleptoparasitic spider Argyrodes elevatus (Araneae, Theridiidae). Anim Behav 27:515–521.

    Google Scholar 

  • Vollrath F (1979b) Vibrations: their signal function for a spider kleptoparasite. Science 205:1149–1151.

    CAS  Google Scholar 

  • Wiehle H (1931) Neue Beiträge zur Kenntnis des Fanggewebes der Spinnen aus den Familien Argiopidae, Uloboridae und Theridiidae. Z Morph Ökol Tiere 23:349–400.

    Google Scholar 

  • Wiese K (1974) The mechanoreceptive system of prey localization in Notonecta. J Comp Physiol A 92:317–325.

    Google Scholar 

  • Wilde J de (1943) Some physical properties of the spinning threads of Aranea diademata. L Arch Neerl Physiol 27:117–132.

    Google Scholar 

  • Wirth E (1984) Die Bedeutung von Zeit-und Amplitudenunterschieden für die Orientierung nach vibratorischen Signalen bei Spinnen. Diplomarbeit, Universität Frankfurt, Frankfurt am Main.

    Google Scholar 

  • Wirth E, Barth FG (1992) Forces in the spider orb web. J Comp Physiol A 171:359–371

    Google Scholar 

  • Work RW (1976) The force elongation behavior of web fibers and silks forcibly obtained from orb-web-spinning spiders. Textile Res J 46:485–492.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barth, F.G. (1998). The Vibrational Sense of Spiders. In: Hoy, R.R., Popper, A.N., Fay, R.R. (eds) Comparative Hearing: Insects. Springer Handbook of Auditory Research, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0585-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0585-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6828-4

  • Online ISBN: 978-1-4612-0585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics