Skip to main content

Preclinical Activity of Metronomic Regimens with Alkylating Agents and Antimetabolites

  • Chapter
  • First Online:
Metronomic Chemotherapy

Abstract

We know that the same drug, when administered at different doses, schedules, and moments, can produce completely different effects on tumor progression. For the last 10 years, research has been trying to unravel how metronomic chemotherapy antitumor effects arise.

Numerous in vitro and in vivo studies have provided evidence that the main effects of metronomic chemotherapy are related not only to tumor angiogenesis but also to the cancer cells, tumor environment, and stromal component. Nevertheless, there remain large gaps in our knowledge of the molecular mechanisms by which these effects arise.

This review summarizes part of the preclinical research, performed with those alkylating agents and antimetabolites most commonly used in the metronomic chemotherapy approach. Much of this report concerns cyclophosphamide, since, in this context, it is the most widely explored drug so far. The report also draws attention to the numerous cancer cell lines and the main murine models used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamano Y, Sugimoto H, Soubasakos MA, Kieran M, Olsen BR, Lawler J, Sudhakar A, Kalluri R (2004) Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res 64:1570–1574

    Article  CAS  PubMed  Google Scholar 

  2. Bocci G, Nicolaou KC, Kerbel RS (2002) Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res 62:6938–6943

    CAS  PubMed  Google Scholar 

  3. Gunther M, Wagner E, Ogris M (2008) Acrolein: unwanted side product or contribution to antiangiogenic properties of metronomic cyclophosphamide therapy? J Cell Mol Med 12:2704–2716

    Article  CAS  PubMed  Google Scholar 

  4. Penel N, Adenis A, Bocci G (2012) Cyclophosphamide-based metronomic chemotherapy: after 10 years of experience, where do we stand and where are we going? Crit Rev Oncol Hematol 82:40–50

    Article  PubMed  Google Scholar 

  5. Man S, Bocci G, Francia G, Green SK, Jothy S, Hanahan D, Bohlen P, Hicklin DJ, Bergers G, Kerbel RS (2002) Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res 62:2731–2735

    CAS  PubMed  Google Scholar 

  6. Vives M, Ginesta MM, Gracova K, Graupera M, Casanovas O, Capella G, Serrano T, Laquente B, Viñals F (2013) Metronomic chemotherapy following the maximum tolerated dose is an effective anti-tumour therapy affecting angiogenesis, tumour dissemination and cancer stem cells. Int J Cancer 133(10):2464–2472

    Google Scholar 

  7. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886

    CAS  PubMed  Google Scholar 

  8. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel RS (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105:R15–R24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hanahan D, Bergers G, Bergsland E (2000) Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105:1045–1047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  11. Kerbel RS (1991) Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. Bioessays 13:31–36

    Article  CAS  PubMed  Google Scholar 

  12. Jang JW, Park ST, Kwon JH, You CR, Choi JY, Jung CK, Bae SH, Yoon SK (2011) Suppression of hepatic tumor growth and metastasis by metronomic therapy in a rat model of hepatocellular carcinoma. Exp Mol Med 43:305–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Rozados VR, Sanchez AM, Gervasoni SI, Berra HH, Matar P, Graciela Scharovsky O (2004) Metronomic therapy with cyclophosphamide induces rat lymphoma and sarcoma regression, and is devoid of toxicity. Ann Oncol 15:1543–1550

    Article  CAS  PubMed  Google Scholar 

  14. Zacarias Fluck MF, Rico MJ, Gervasoni SI, Ilarregui JM, Toscano MA, Rabinovich GA, Scharovsky OG (2007) Low-dose cyclophosphamide modulates galectin-1 expression and function in an experimental rat lymphoma model. Cancer Immunol Immunother 56:237–248

    Article  CAS  PubMed  Google Scholar 

  15. Shaked Y, Emmenegger U, Francia G, Chen L, Lee CR, Man S, Paraghamian A, Ben-David Y, Kerbel RS (2005) Low-dose metronomic combined with intermittent bolus-dose cyclophosphamide is an effective long-term chemotherapy treatment strategy. Cancer Res 65:7045–7051

    Article  CAS  PubMed  Google Scholar 

  16. Damber JE, Vallbo C, Albertsson P, Lennernas B, Norrby K (2006) The anti-tumour effect of low-dose continuous chemotherapy may partly be mediated by thrombospondin. Cancer Chemother Pharmacol 58:354–360

    Article  CAS  PubMed  Google Scholar 

  17. Shahrzad S, Shirasawa S, Sasazuki T, Rak JW, Coomber BL (2008) Low-dose metronomic cyclophosphamide treatment mediates ischemia-dependent K-ras mutation in colorectal carcinoma xenografts. Oncogene 27:3729–3738

    Article  CAS  PubMed  Google Scholar 

  18. Blansfield JA, Caragacianu D, Alexander HR 3rd, Tangrea MA, Morita SY, Lorang D, Schafer P, Muller G, Stirling D, Royal RE, Libutti SK (2008) Combining agents that target the tumor microenvironment improves the efficacy of anticancer therapy. Clin Cancer Res 14:270–280

    Article  CAS  PubMed  Google Scholar 

  19. Bocci G, Francia G, Man S, Lawler J, Kerbel RS (2003) Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci U S A 100:12917–12922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Monestiroli S, Mancuso P, Burlini A, Pruneri G, Dell’Agnola C, Gobbi A, Martinelli G, Bertolini F (2001) Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res 61:4341–4344

    CAS  PubMed  Google Scholar 

  21. Shaked Y, Bertolini F, Man S, Rogers MS, Cervi D, Foutz T, Rawn K, Voskas D, Dumont DJ, Ben-David Y, Lawler J, Henkin J, Huber J, Hicklin DJ, D’amato RJ, Kerbel RS (2005) Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7:101–111

    CAS  PubMed  Google Scholar 

  22. Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y, Kerbel RS (2003) Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63:4342–4346

    CAS  PubMed  Google Scholar 

  23. Shaked Y, Emmenegger U, Man S, Cervi D, Bertolini F, Ben-David Y, Kerbel RS (2005) Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 106:3058–3061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Daenen LG, Shaked Y, Man S, Xu P, Voest EE, Hoffman RM, Chaplin DJ, Kerbel RS (2009) Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models. Mol Cancer Ther 8:2872–2881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kosmaczewska A, Ciszak L, Potoczek S, Frydecka I (2008) The significance of Treg cells in defective tumor immunity. Arch Immunol Ther Exp (Warsz) 56:181–191

    Article  CAS  Google Scholar 

  26. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24:5373–5380

    Article  PubMed  Google Scholar 

  27. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  CAS  PubMed  Google Scholar 

  28. Kono K, Kawaida H, Takahashi A, Sugai H, Mimura K, Miyagawa N, Omata H, Fujii H (2006) CD4(+)CD25 high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother 55:1064–1071

    Article  CAS  PubMed  Google Scholar 

  29. Berd D, Mastrangelo MJ (1988) Effect of low dose cyclophosphamide on the immune system of cancer patients: depletion of CD4+, 2H4+ suppressor-inducer T-cells. Cancer Res 48:1671–1675

    CAS  PubMed  Google Scholar 

  30. Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, Okoye FI, Jaffee EM (2001) Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 61:3689–3697

    CAS  PubMed  Google Scholar 

  31. Motoyoshi Y, Kaminoda K, Saitoh O, Hamasaki K, Nakao K, Ishii N, Nagayama Y, Eguchi K (2006) Different mechanisms for anti-tumor effects of low- and high-dose cyclophosphamide. Oncol Rep 16:141–146

    CAS  PubMed  Google Scholar 

  32. Lutsiak ME, Semnani RT, de Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868

    Article  CAS  PubMed  Google Scholar 

  33. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344

    Article  CAS  PubMed  Google Scholar 

  34. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  CAS  PubMed  Google Scholar 

  35. Matar P, Rozados VR, Gervasoni SI, Scharovsky GO (2002) Th2/Th1 switch induced by a single low dose of cyclophosphamide in a rat metastatic lymphoma model. Cancer Immunol Immunother 50:588–596

    Article  CAS  PubMed  Google Scholar 

  36. Matar P, Rozados VR, Gervasoni SI, Scharovsky OG (2001) Down regulation of T-cell-derived IL-10 production by low-dose cyclophosphamide treatment in tumor-bearing rats restores in vitro normal lymphoproliferative response. Int Immunopharmacol 1:307–319

    Article  CAS  PubMed  Google Scholar 

  37. Sharabi A, Ghera NH (2010) Breaking tolerance in a mouse model of multiple myeloma by chemoimmunotherapy. Adv Cancer Res 107:1–37

    Article  CAS  PubMed  Google Scholar 

  38. Wada S, Yoshimura K, Hipkiss EL, Harris TJ, Yen HR, Goldberg MV, Grosso JF, Getnet D, Demarzo AM, Netto GJ, Anders R, Pardoll DM, Drake CG (2009) Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model. Cancer Res 69:4309–4318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, Uehira M (1999) Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17:177–181

    Article  CAS  PubMed  Google Scholar 

  40. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58:1048–1051

    CAS  PubMed  Google Scholar 

  41. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  42. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  CAS  PubMed  Google Scholar 

  43. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  44. Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67:3560–3564

    Article  CAS  PubMed  Google Scholar 

  45. Tan S, Chen JS, Sun LJ, Yao HR (2009) Selective enrichment of hepatocellular cancer stem cells by chemotherapy. J Int Med Res 37:1046–1056

    Article  CAS  PubMed  Google Scholar 

  46. Martin-Padura I, Marighetti P, Agliano A, Colombo F, Larzabal L, Redrado M, Bleau AM, Prior C, Bertolini F, Calvo A (2012) Residual dormant cancer stem-cell foci are responsible for tumor relapse after antiangiogenic metronomic therapy in hepatocellular carcinoma xenografts. Lab Invest 92:952–966

    Article  CAS  PubMed  Google Scholar 

  47. Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, Akita H, Takiuchi D, Hatano H, Nagano H, Barnard GF, Doki Y, Mori M (2010) CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 120:3326–3339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Zhao Y, Bao Q, Schwarz B, Zhao L, Mysliwietz J, Ellwart J, Renner A, Hirner H, Niess H, Camaj P, Angele M, Gros S, Izbicki J, Jauch KW, Nelson PJ, Bruns CJ (2014) Stem cell like side populations in esophageal cancer: a source of chemotherapy resistance and metastases. Stem Cells Dev 23(2):180–192

    Google Scholar 

  49. Goodell MA, Rosenzweig M, Kim H, Marks DF, Demaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345

    Article  CAS  PubMed  Google Scholar 

  50. Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436

    Article  CAS  PubMed  Google Scholar 

  51. Pietras K, Hanahan D (2005) A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 23:939–952

    Article  CAS  PubMed  Google Scholar 

  52. Bell-Mcguinn KM, Garfall AL, Bogyo M, Hanahan D, Joyce JA (2007) Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Res 67:7378–7385

    Article  CAS  PubMed  Google Scholar 

  53. Nagasubramanian R, Dolan ME (2003) Temozolomide: realizing the promise and potential. Curr Opin Oncol 15:412–418

    Article  CAS  PubMed  Google Scholar 

  54. Vera K, Djafari L, Faivre S, Guillamo JS, Djazouli K, Osorio M, Parker F, Cioloca C, Abdulkarim B, Armand JP, Raymond E (2004) Dose-dense regimen of temozolomide given every other week in patients with primary central nervous system tumors. Ann Oncol 15:161–171

    Article  CAS  PubMed  Google Scholar 

  55. Payne MJ, Pratap SE, Middleton MR (2005) Temozolomide in the treatment of solid tumours: current results and rationale for dosing/scheduling. Crit Rev Oncol Hematol 53:241–252

    Article  CAS  PubMed  Google Scholar 

  56. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  57. Kurzen H, Schmitt S, Naher H, Mohler T (2003) Inhibition of angiogenesis by non-toxic doses of temozolomide. Anticancer Drugs 14:515–522

    Article  CAS  PubMed  Google Scholar 

  58. Ko KK, Lee ES, Joe YA, Hong YK (2011) Metronomic treatment of temozolomide increases anti-angiogenicity accompanied by down-regulated O(6)-methylguanine-DNA methyltransferase expression in endothelial cells. Exp Ther Med 2:343–348

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Fukushima T, Takeshima H, Kataoka H (2009) Anti-glioma therapy with temozolomide and status of the DNA-repair gene MGMT. Anticancer Res 29:4845–4854

    CAS  PubMed  Google Scholar 

  60. Pan Q, Yang XJ, Wang HM, Dong XT, Wang W, Li Y, Li JM (2012) Chemoresistance to temozolomide in human glioma cell line U251 is associated with increased activity of O6-methylguanine-DNA methyltransferase and can be overcome by metronomic temozolomide regimen. Cell Biochem Biophys 62:185–191

    Article  CAS  PubMed  Google Scholar 

  61. Kim JT, Kim JS, Ko KW, Kong DS, Kang CM, Kim MH, Son MJ, Song HS, Shin HJ, Lee DS, Eoh W, Nam DH (2006) Metronomic treatment of temozolomide inhibits tumor cell growth through reduction of angiogenesis and augmentation of apoptosis in orthotopic models of gliomas. Oncol Rep 16:33–39

    PubMed  Google Scholar 

  62. Zhou Q, Guo P, Wang X, Nuthalapati S, Gallo JM (2007) Preclinical pharmacokinetic and pharmacodynamic evaluation of metronomic and conventional temozolomide dosing regimens. J Pharmacol Exp Ther 321:265–275

    Article  CAS  PubMed  Google Scholar 

  63. Banissi C, Ghiringhelli F, Chen L, Carpentier AF (2009) Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58:1627–1634

    Article  CAS  PubMed  Google Scholar 

  64. Murray A, Little SJ, Stanley P, Maraveyas A, Cawkwell L (2010) Sorafenib enhances the in vitro anti-endothelial effects of low dose (metronomic) chemotherapy. Oncol Rep 24:1049–1058

    Article  CAS  PubMed  Google Scholar 

  65. Chen C, Xu T, Lu Y, Chen J, Wu S (2013) The efficacy of temozolomide for recurrent glioblastoma multiforme. Eur J Neurol 20:223–230

    Article  CAS  PubMed  Google Scholar 

  66. Kong DS, Lee JI, Kim JH, Kim ST, Kim WS, Suh YL, Dong SM, Nam DH (2010) Phase II trial of low-dose continuous (metronomic) treatment of temozolomide for recurrent glioblastoma. Neuro Oncol 12:289–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Lashkari HP, Saso S, Moreno L, Athanasiou T, Zacharoulis S (2011) Using different schedules of Temozolomide to treat low grade gliomas: systematic review of their efficacy and toxicity. J Neurooncol 105:135–147

    Article  CAS  PubMed  Google Scholar 

  68. Ma L, Francia G, Viloria-Petit A, Hicklin DJ, Du Manoir J, Rak J, Kerbel RS (2005) In vitro procoagulant activity induced in endothelial cells by chemotherapy and antiangiogenic drug combinations: modulation by lower-dose chemotherapy. Cancer Res 65:5365–5373

    Article  CAS  PubMed  Google Scholar 

  69. Boven E, Schipper H, Erkelens CA, Hatty SA, Pinedo HM (1993) The influence of the schedule and the dose of gemcitabine on the anti-tumour efficacy in experimental human cancer. Br J Cancer 68:52–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Jia L, Zhang MH, Yuan SZ, Huang WG (2005) Antiangiogenic therapy for human pancreatic carcinoma xenografts in nude mice. World J Gastroenterol 11:447–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Laquente B, Lacasa C, Ginesta MM, Casanovas O, Figueras A, Galan M, Ribas IG, Germa JR, Capella G, Viñals F (2008) Antiangiogenic effect of gemcitabine following metronomic administration in a pancreas cancer model. Mol Cancer Ther 7:638–647

    Google Scholar 

  72. Tran Cao HS, Bouvet M, Kaushal S, Keleman A, Romney E, Kim G, Fruehauf J, Imagawa DK, Hoffman RM, Katz MH (2010) Metronomic gemcitabine in combination with sunitinib inhibits multisite metastasis and increases survival in an orthotopic model of pancreatic cancer. Mol Cancer Ther 9:2068–2078

    Article  PubMed  Google Scholar 

  73. Cham KK, Baker JH, Takhar KS, Flexman JA, Wong MQ, Owen DA, Yung A, Kozlowski P, Reinsberg SA, Chu EM, Chang CW, Buczkowski AK, Chung SW, Scudamore CH, Minchinton AI, Yapp DT, Ng SS (2010) Metronomic gemcitabine suppresses tumour growth, improves perfusion, and reduces hypoxia in human pancreatic ductal adenocarcinoma. Br J Cancer 103:52–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Shevchenko I, Karakhanova S, Soltek S, Link J, Bayry J, Werner J, Umansky V, Bazhin AV (2013) Low-dose gemcitabine depletes regulatory T cells and improves survival in the orthotopic Panc02 model of pancreatic cancer. Int J Cancer 133:98–107

    Article  CAS  PubMed  Google Scholar 

  75. Tongu M, Harashima N, Monma H, Inao T, Yamada T, Kawauchi H, Harada M (2013) Metronomic chemotherapy with low-dose cyclophosphamide plus gemcitabine can induce anti-tumor T cell immunity in vivo. Cancer Immunol Immunother 62:383–391

    Article  CAS  PubMed  Google Scholar 

  76. Francia G, Shaked Y, Hashimoto K, Sun J, Yin M, Cesta C, Xu P, Man S, Hackl C, Stewart J, Uhlik M, Dantzig AH, Foster FS, Kerbel RS (2012) Low-dose metronomic oral dosing of a prodrug of gemcitabine (LY2334737) causes antitumor effects in the absence of inhibition of systemic vasculogenesis. Mol Cancer Ther 11:680–689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Pratt SE, Durland-Busbice S, Shepard RL, Donoho GP, Starling JJ, Wickremsinhe ER, Perkins EJ, Dantzig AH (2013) Efficacy of low-dose oral metronomic dosing of the prodrug of gemcitabine, LY2334737, in human tumor xenografts. Mol Cancer Ther 12:481–490

    Article  CAS  PubMed  Google Scholar 

  78. Drevs J, Fakler J, Eisele S, Medinger M, Bing G, Esser N, Marme D, Unger C (2004) Antiangiogenic potency of various chemotherapeutic drugs for metronomic chemotherapy. Anticancer Res 24:1759–1763

    CAS  PubMed  Google Scholar 

  79. Faile RJ, Baker LH, Buroker TR, Horwitz J, Vaitkevicius VK (1980) Pharmacokinetics of 5-fluorouracil administered orally, by rapid intravenous and by slow infusion. Cancer Res 40:2223–2228

    Google Scholar 

  80. Lamont EB, Schilsky RL (1999) The oral fluoropyrimidines in cancer chemotherapy. Clin Cancer Res 5:2289–2296

    CAS  PubMed  Google Scholar 

  81. Yonekura K, Basaki Y, Chikahisa L, Okabe S, Hashimoto A, Miyadera K, Wierzba K, Yamada Y (1999) UFT and its metabolites inhibit the angiogenesis induced by murine renal cell carcinoma, as determined by a dorsal air sac assay in mice. Clin Cancer Res 5:2185–2191

    CAS  PubMed  Google Scholar 

  82. Ikeda K, Yoshisue K, Matsushima E, Nagayama S, Kobayashi K, Tyson CA, Chiba K, Kawaguchi Y (2000) Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro. Clin Cancer Res 6:4409–4415

    CAS  PubMed  Google Scholar 

  83. Takiuchi H, Kawabe S, Gotoh M, Katsu K (2007) Thymidylate synthase gene expression in primary tumors predicts activity of s-1-based chemotherapy for advanced gastric cancer. Gastrointest Cancer Res 1:171–176

    PubMed Central  PubMed  Google Scholar 

  84. Tang TC, Man S, Xu P, Francia G, Hashimoto K, Emmenegger U, Kerbel RS (2010) Development of a resistance-like phenotype to sorafenib by human hepatocellular carcinoma cells is reversible and can be delayed by metronomic UFT chemotherapy. Neoplasia 12:928–940

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Munoz R, Man S, Shaked Y, Lee CR, Wong J, Francia G, Kerbel RS (2006) Highly efficacious nontoxic preclinical treatment for advanced metastatic breast cancer using combination oral UFT-cyclophosphamide metronomic chemotherapy. Cancer Res 66:3386–3391

    Article  CAS  PubMed  Google Scholar 

  86. Nio Y, Iguchi C, Kodama H, Itakura M, Hashimoto K, Koike M, Toga T, Maruyama R, Fukushima M (2007) Cyclophosphamide augments the anti-tumor efficacy of uracil and tegafur by inhibiting dihydropyrimidine dehydrogenase. Oncol Rep 17:153–159

    CAS  PubMed  Google Scholar 

  87. Nukatsuka M, Saito H, Nakagawa F, Abe M, Uchida J, Shibata J, Matsuo K, Noguchi S, Kiniwa M (2011) Oral fluoropyrimidine may augment the efficacy of aromatase inhibitor via the down-regulation of estrogen receptor in estrogen-responsive breast cancer xenografts. Breast Cancer Res Treat 128:381–390

    Article  CAS  PubMed  Google Scholar 

  88. Zhang Q, Kang X, Yang B, Wang J, Yang F (2008) Antiangiogenic effect of capecitabine combined with ginsenoside Rg3 on breast cancer in mice. Cancer Biother Radiopharm 23:647–653

    Article  CAS  PubMed  Google Scholar 

  89. Ooyama A, Oka T, Zhao HY, Yamamoto M, Akiyama S, Fukushima M (2008) Anti-angiogenic effect of 5-Fluorouracil-based drugs against human colon cancer xenografts. Cancer Lett 267:26–36

    Article  CAS  PubMed  Google Scholar 

  90. Iwamoto H, Torimura T, Nakamura T, Hashimoto O, Inoue K, Kurogi J, Niizeki T, Kuwahara R, Abe M, Koga H, Yano H, Kerbel RS, Ueno T, Sata M (2011) Metronomic S-1 chemotherapy and vandetanib: an efficacious and nontoxic treatment for hepatocellular carcinoma. Neoplasia 13:187–197

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Doi Y, Okada T, Matsumoto H, Ichihara M, Ishida T, Kiwada H (2010) Combination therapy of metronomic S-1 dosing with oxaliplatin-containing polyethylene glycol-coated liposome improves antitumor activity in a murine colorectal tumor model. Cancer Sci 101:2470–2475

    Article  CAS  PubMed  Google Scholar 

  92. Munoz R, Shaked Y, Bertolini F, Emmenegger U, Man S, Kerbel RS (2005) Anti-angiogenic treatment of breast cancer using metronomic low-dose chemotherapy. Breast 14:466–479

    Article  PubMed  Google Scholar 

  93. Sharabi A, Laronne-Bar-On A, Meshorer A, Haran-Ghera N (2010) Chemoimmunotherapy reduces the progression of multiple myeloma in a mouse model. Cancer Prev Res (Phila) 3:1265–1276

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Viñals .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vives, M., Laquente, B., Viñals, F. (2014). Preclinical Activity of Metronomic Regimens with Alkylating Agents and Antimetabolites. In: Bocci, G., Francia, G. (eds) Metronomic Chemotherapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43604-2_4

Download citation

Publish with us

Policies and ethics