Skip to main content

Advertisement

Log in

Low-dose cyclophosphamide modulates galectin-1 expression and function in an experimental rat lymphoma model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In recent years, one of the most important insights into tumor immunity was provided by the identification of negative regulatory pathways and immune escape strategies that greatly influence the magnitude of antitumor responses. Galectin-1 (Gal-1), a member of a family of highly conserved β-galactoside-binding proteins, has been recently shown to contribute to tumor cell evasion of immune responses by modulating survival and differentiation of effector T cells. However, there is still scarce information about the regulation of Gal-1 expression and function in vivo. Here we show that administration of a single low-dose cyclophosphamide (Cy), which is capable of restraining metastasis in the rat lymphoma model L-TACB, can also influence Gal-1 expression in primary tumor, metastasis, and spleen cells and modulate the effects of this protein on T cell survival. A time-course study revealed a positive correlation between Gal-1 expression and tumor volume in primary tumor cells. Conversely, Gal-1 expression was significantly reduced in spleen cells and lymph node metastasis throughout the period studied. Interestingly, cyclophosphamide treatment was capable of restoring the basal levels of Gal-1 expression in primary tumors and spleens. In addition, this antimetastatic agent rendered spleen T cells from tumor-bearing animals resistant to Gal-1-induced cell death. Our results suggest that, in addition to other well-known functions of cyclophosphamide, this immunomodulatory agent may also modulate Gal-1 expression and function during tumor growth and metastasis with critical implications for tumor-immune escape and immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams L, Scott GK, Weinberg CS (1996) Biphasic modulation of cell growth by recombinant human galectin-1. Biochim Biophys Acta 1312:137–144

    Article  PubMed  Google Scholar 

  2. Amano M, Galvan M, He J, Baum LG (2003) The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J Biol Chem 278:7468–7475

    Article  Google Scholar 

  3. André S, Pieters RJ, Vrasidas I, Kaltner H, Kuwabara I, Liu FT, Liskamp RM, Gabius HJ (2001) Wedgelike glycodendrimers as inhibitors of binding of mammalian galectins to glycoproteins, lactose maxiclusters, and cell surface glycoconjugates. Chembiochem 2:822–830

    Article  PubMed  Google Scholar 

  4. Baum LG, Blackall DP, Arias-Magallano S, Nanigian D, Uh SY, Browne JM, Hoffmann D, Emmanouilides CE, Territo MC, Baldwin GC (2003) Amelioration of graft versus host disease by galectin-1. Clin Immunol 109:295–307

    Article  PubMed  CAS  Google Scholar 

  5. Blaser C, Kaufmann M, Muller C, Zimmermann C, Wells V, Mallucci L, Pircher H (1998) β-Galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur J Immunol 28:2311–2319

    Article  PubMed  CAS  Google Scholar 

  6. Calderari S, Font MT, Garrocq O, Martínez S, Morini JC, Puche R, Tarrés MC (1991) The inbred IIM/Fm stock. Rat News Lett 25:28–29

    Google Scholar 

  7. Canadian Council on Animal Care guide to the care and use of experimental animals, vol 1, 2nd edn, 1993

  8. Celoria GC, Hinrichsen LI, Font MT (1986) Tumor behavior of lymphoma TACB in rats resistant or susceptible to sarcoma e-100. Com Biol (Bs Aires) 5:73–83

    Google Scholar 

  9. Chiariotti L, Salvatore P, Frunzio R, Bruni CB (2004) Galectin genes: regulation of expression. Glycoconj J 19:441–449

    Article  PubMed  Google Scholar 

  10. Chung CD, Patel VP, Moran M, Lewis LA, Miceli MC (2000) Galectin-1 induces partial TCR ζ-chain phosphorylation and antagonizes processive TCR signal transduction. J Immunol 165:3722–3729

    PubMed  CAS  Google Scholar 

  11. Correa SG, Sotomayor CE, Aoki MP, Maldonado CA, Rabinovich GA (2003) Opposite effects of galectin-1 on alternative metabolic pathways of l-arginine in resident, inflammatory and activated macrophages. Glycobiology 13:119–128

    Article  PubMed  CAS  Google Scholar 

  12. Danguy A, Camby I, Kiss R (2002) Galectins and cancer. Biochim Biophys Acta 1572:285–293

    PubMed  CAS  Google Scholar 

  13. Doménico AD, Rabasa SL, Font MT, Suárez JM (1963) Sarcoma E-100. Ciencia Invest 19:462–465

    Google Scholar 

  14. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    Article  PubMed  CAS  Google Scholar 

  15. Fuertes MB, Molinero LL, Toscano MA, Ilarregui JM, Rubinstein N, Fainboim L, Zwirner NW, Rabinovich GA (2004) Regulated expression of galectin-1 during T-cell activation involves Lck and Fyn kinases and signaling through MEK1/ERK, p38 MAP kinase and p70S6 kinase. Mol Cell Biochem 267:177–185

    Article  PubMed  CAS  Google Scholar 

  16. Galvan M, Tsuboi S, Fukuda M, Baum LG (2000) Expression of a specific glycosyltransferase enzyme regulates cell death mediated by galectin-1. J Biol Chem 275:16730–16737

    Article  PubMed  CAS  Google Scholar 

  17. Gillenwater A, Xu XC, Estrov Y, Sacks PG, Lotan D, Lotan R (1998) Modulation of galectin-1 content in human head and neck squamous carcinoma cells by sodium butyrate. Int J Cancer 75:217–224

    Article  PubMed  CAS  Google Scholar 

  18. Glinsky GV, Price JE, Glinsky VV, Mossine VV, Kiriakova G, Metcalf JB (1996) Inhibition of human breast cancer metastasis in nude mice by synthetic glycoamines. Cancer Res 56:5319–5324

    PubMed  CAS  Google Scholar 

  19. He J, Baum LG (2004) Presentation of galectin-1 by extracellular matrix triggers T cell death. J Biol Chem 279:4705–4712

    Article  PubMed  CAS  Google Scholar 

  20. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572:232–254

    PubMed  CAS  Google Scholar 

  21. Lahm H, André S, Hoeflich A, Kaltner H, Siebert HC, Sordat B, von des Lieth CW, Wolf E, Gabius HJ (2004) Tumor galectinology: insights into the complex network of a family of endogenous lectins. Glycoconj J 20:227–238

    Article  PubMed  CAS  Google Scholar 

  22. Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5:29–41

    Article  PubMed  CAS  Google Scholar 

  23. Lu Y, Lotan D, Lotan R (2000) Differential regulation of constitutive and retinoic acid-induced galectin-1 gene transcription in murine embryonal carcinoma and myoblastic cells. Biochim Biophys Acta 1491:13–19

    PubMed  CAS  Google Scholar 

  24. Matar P, Celoria G, Font MT, Scharovsky OG (1995) Antimetastatic effect of a single-low dose of cyclophosphamide on a rat lymphoma. J Exp Clin Cancer Res 14:59–63

    CAS  Google Scholar 

  25. Matar P, Rozados VR, Roggero EA, Bonfil RD, Scharovsky OG (1998) Modulation of the antimetastatic effect of a single low dose of cyclophosphamide on rat lymphoma. Tumor Biol 19:69–76

    Article  CAS  Google Scholar 

  26. Matar P, Rozados VR, González AD, Dlugovitzky DG, Bonfil RD, Scharovsky OG (2000) Mechanism of antimetastatic immunopotentiation by low-dose cyclophosphamide. Eur J Cancer 36:1060–1066

    Article  PubMed  CAS  Google Scholar 

  27. Matar P, Rozados VR, Gervasoni SI, Scharovsky OG (2001) Downregulation of T-cell derived IL-10 production by low-dose cyclophosphamide treatment in tumor-bearing rats restores in vitro normal lymphoproliferative response. Int Immunopharmacol 1:307–319

    Article  PubMed  CAS  Google Scholar 

  28. Matar P, Rozados VR, Gervasoni SI, Scharovsky OG (2002) Th2/Th1 switch induced by a single-low dose cyclophosphamide in a rat metastatic lymphoma model. Cancer Immunol Immunother 50:588–596

    Article  PubMed  CAS  Google Scholar 

  29. Matarrese P, Tinari A, Mormone E, Bianco GA, Toscano MA, Ascione B, Rabinovich GA, Malorni W (2005) Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding and fission. J Biol Chem 280:6969–6985

    Article  PubMed  CAS  Google Scholar 

  30. Nangia-Makker P, Hogan V, Honjo Y, Baccarini S, Trait L, Bresalier R, Raz A (2002) Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst 94:1854–1862

    PubMed  CAS  Google Scholar 

  31. Pardoll D, Allison J (2004) Cancer immunotherapy: breaking the barriers to harvest the crop. Nat Med 10:887–892

    Article  PubMed  CAS  Google Scholar 

  32. Perillo NL, Pace KE, Seilhamer JJ, Baum LG (1995) Apoptosis of T cells mediated by galectin-1. Nature 378:736–739

    Article  PubMed  CAS  Google Scholar 

  33. Prehn RT, Lappé MA (1971) An immunostimulation theory of tumor development. Transplant Rev 7:26–54

    PubMed  CAS  Google Scholar 

  34. Prehn RT, Outzen HC (1980) Immunostimulation of tumor growth. Prog Immunol 4:651–658

    Google Scholar 

  35. Prehn RT (1994) Stimulatory effects of immune reactions upon the growths of untransplanted tumors. Cancer Res 54:908–914

    PubMed  CAS  Google Scholar 

  36. Rabinovich GA, Iglesias MM, Modesti NM, Castagna LF, Wolfenstein-Todel C, Riera CM, Sotomayor CE (1998) Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells: biochemical and functional characterization. J Immunol 160:4831–4840

    PubMed  CAS  Google Scholar 

  37. Rabinovich GA, Daly G, Dreja H, Tailor H, Riera CM, Hirabayashi J, Chernajovsky Y (1999) Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J Exp Med 190:385–397

    Article  PubMed  CAS  Google Scholar 

  38. Rabinovich GA, Ariel A, Hershkoviz R, Hirabayashi J, Kasai KI, Lider O (1999) Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1. Immunology 97:100–106

    Article  PubMed  CAS  Google Scholar 

  39. Rabinovich GA, Baum L, Liu F, Tinari N, Paganelli R, Iacobelli S (2002) Galectins and their glycoligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol 23:313–320

    Article  PubMed  CAS  Google Scholar 

  40. Rabinovich GA, Rubinstein N, Toscano MA (2002) Role of galectins in inflammatory and immunomodulatory processes. Biochim Biophys Acta 1572:274–284

    PubMed  CAS  Google Scholar 

  41. Rabinovich GA, Ramhorst RE, Rubinstein N, Corigliano A, Daroqui C, Bal de Kier Joffe E, Fainboim L (2002) Induction of allogeneic T-cell hyporesponsiveness by a galectin-1-mediated apoptotic and non-apoptotic mechanisms. Cell Death Differ 9:661–670

    Article  PubMed  CAS  Google Scholar 

  42. Rabinovich GA, Rubinstein N, Matar P, Rozados V, Scharovsky OG (2002) The anti-metastatic effect of a single low dose cyclophosphamide involves modulation of galectin-1 and Bcl-2 expression. Cancer Immunol Immunother 50:587–603

    Article  CAS  Google Scholar 

  43. Rabinovich GA, Modesti NM, Castagna LF, Landa CA, Riera CM, Sotomayor CE (1997) Specific inhibition of lymphocyte proliferation and induction of apoptosis by CLL-I, a β-galactoside-binding lectin. J Biochem 122:365–373

    PubMed  CAS  Google Scholar 

  44. Rabinovich GA (2005) Galectin-1 as a potential cancer target. Br J Cancer 92:1182–1192

    Article  PubMed  CAS  Google Scholar 

  45. Rabinovich GA, Cumashi A, Bianco GA, Ciavardelli D, Iurisci I, D’Egidio M, Piccolo E, Tinari N, Nifantiev N, Iacobelli S (2006) Synthetic lactulose amines: novel class of anticancer agents that induce tumor-cell apoptosis and inhibit galectin-mediated homotypic cell aggregation and endothelial cell morphogenesis. Glycobiology 16:210–220

    Article  PubMed  CAS  Google Scholar 

  46. Rappl G, Abken H, Muche JM, Sterry W, Tilgen W, André S, Kaltner H, Ugurel S, Gabius HJ, Reinhold U (2002) CD4 + CD7- leukemic T cells from patients with Sezary syndrome are protected from galectin-1-triggered T cell death. Leukemia 16:40–45

    Article  Google Scholar 

  47. Roberts AA, Amano M, Felten C, Galvan M, Sulur G, Pinter-Brown L, Dobbeling U, Burg G, Said J, Baum LG (2003) Galectin-1-mediated apoptosis in mycosis fungoides: the roles of CD7 and cell surface glycosylation. Mod Pathol 16:543–551

    Article  PubMed  Google Scholar 

  48. Rubinstein N, Alvarez M, Zwirner N, Toscano MA, Ilarregui JM, Bravo A, Mordoh J, Fainboim L, Podhajcer O, Rabinovich GA (2004) Targeted inhibition of galectin-1 gene expression results in heightened T-cell-mediated tumor rejection: a novel mechanism of tumor-immune privilege. Cancer Cell 5:241–251

    Article  PubMed  CAS  Google Scholar 

  49. Santucci L, Fiorucci S, Rubinstein N, Mencarelli A, Palazzetti B, Federici B, Rabinovich GA, Morelli A (2003) Galectin-1 suppresses experimental colitis in mice. Gastroenterology 124:1381–1394

    Article  PubMed  CAS  Google Scholar 

  50. Sorme P, Qian Y, Nyholm PG, Leffler H, Nilsson UJ (2002) Low micromolar inhibitors of galectin-3 based on 3′-derivatization of N-acetyllactosamine. Chembiochem 3:183–189

    Article  PubMed  CAS  Google Scholar 

  51. Squartini F, Pingitore R (1994) Tumours of the mammary gland. In: Turusov VS (eds) Pathology of tumours in laboratory animals, vol II. Tumours of the mouse. IARC Scientific Publications No. 2, Lyon, pp43–90

  52. Stewart THM (1996) Evidence for immune facilitation of breast cancer growth and for the immune promotion of oncogenesis in breast cancer. Medicina (Buenos Aires) 56 (Suppl I):13–24

    Google Scholar 

  53. Stewart TH, Heppner GH (1997) Immunological enhancement of breast cancer. Parasitology Suppl 115:S141–S153

    Article  Google Scholar 

  54. van den Brüle F (2004) Expression of galectins in cancer: a critical review. Glycoconj J 19:537–542

    Article  PubMed  Google Scholar 

  55. Vas V, Fajka-Boja R, Ion G, Dudics V, Monostori E, Uher F (2005) Biphasic effect of recombinant galectin-1 on the growth and death of early hematopoietic cells. Stem Cells 23:279–287

    Article  PubMed  CAS  Google Scholar 

  56. Zuñiga E, Rabinovich GA, Iglesias MM, Gruppi A (2001) Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis. J Leukoc Biol 70:73–79

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Hirabayashi and K.I. Kasai for providing the plasmid pET21a/hGal1, Dr. E. Roggero for his advice in the immunohistochemical pictures, and Ana Rossa for her technical assistance. This research was supported by a grant from the National University of Rosario (to O.G.S), grants from the National Agency for Promotion of Science and Technology (PICT 2003-05-13787 to G.A.R.), Sales Foundation (to G.A.R.), University of Buenos Aires (M091 to G.A.R.). G.A.R. is a member of the Scientific Career of CONICET. O.G.S. is a member of the Scientific Career of C.I.U.N.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Graciela Scharovsky.

Additional information

Mariano F. Zacarías Fluck and María J. Rico contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zacarías Fluck, M.F., Rico, M.J., Gervasoni, S.I. et al. Low-dose cyclophosphamide modulates galectin-1 expression and function in an experimental rat lymphoma model. Cancer Immunol Immunother 56, 237–248 (2007). https://doi.org/10.1007/s00262-006-0176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0176-0

Keywords

Navigation