Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

The aim of this chapter is to review different approaches that have been proposed to compute fabric tensors with emphasis on trabecular bone research. Fabric tensors aim at modeling through tensors both anisotropy and orientation of a material with respect to another one. Fabric tensors are widely used in fields such as trabecular bone research, mechanics of materials and geology. These tensors can be seen as semi-global measurements since they are computed in relatively large neighborhoods, which are assumed quasi-homogeneous. Many methods have been proposed to compute fabric tensors. We propose to classify fabric tensors into two categories: mechanics-based and morphology-based. The former computes fabric tensors from mechanical simulations, while the latter computes them by analyzing the morphology of the materials. In addition to pointing out advantages and drawbacks for each method, current trends and challenges in this field are also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We thank Prof. Osman Ratib from the Service of Nuclear Medicine at the Geneva University Hospitals for providing the μCT scan of the vertebra; Andres Laib from SCANCO Medical AG and Torkel Brismar from the Division of Radiology at the Karolinska University Hospital for providing the μCT scan of the radius.

References

  1. Abtahi, J., Tengvall, P., Aspenberg, P.: A bisphosphonate-coating improves the fixation of metal implants in human bone. a randomized trial of dental implants. Bone 50(5), 1148–1151 (2012)

    Google Scholar 

  2. Aula, A., Töyräs, J., Hakulinen, M., Jurvelin, J.: Effect of bone marrow on acoustic properties of trabecular bone – 3d finite difference modeling study. Ultrasound Med. Biol. 35(2), 308–318 (2009)

    Article  Google Scholar 

  3. Averbuch, A., Coifman, R., Donoho, D., Elad, M., Israeli, M.: Fast and accurate polar Fourier transform. Appl. Comput. Harmon. Anal. 21(2), 145–167 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bauer, J.S., Link, T.M.: Advances in osteoporosis imaging. Eur. J. Radiol. 71(3), 440–449 (2009)

    Article  Google Scholar 

  5. Benhamou, C.L., Lespessailles, E., Jacquet, G., Harba, R., Jennane, R., Loussot, T., Tourliere, D., Ohley, W.: Fractal organization of trabecular bone images on calcaneus radiographs. J. Bone. Miner. Res. 9(12), 1909–1918 (1994)

    Article  Google Scholar 

  6. Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proceedings of the International Conference on Computer Vision (ICCV), London, pp. 433–438 (1987)

    Google Scholar 

  7. Brunet-Imbault, B., Lemineur, G., Chappard, C., Harba, R., Benhamou, C.L.: A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform. BMC Med. Imaging 5, 4 (2005)

    Article  Google Scholar 

  8. Capuani, S., Rossi, C., Alesiani, M., Maraviglia, B.: Diffusion tensor imaging to study anisotropy in a particular porous system: the trabecular bone network. Solid State Nucl. Magn. Reson. 28(2–4), 266–272 (2005)

    Article  Google Scholar 

  9. Charalambakis, N.: Homogenization techniques and micromechanics. A survey and perspectives. Appl. Mech. Rev. 63, 030,803–1–030,803–10 (2010)

    Google Scholar 

  10. Chung, H.W., Chu, C.C., Underweiser, M., Wehrli, F.W.: On the fractal nature of trabecular structure. Med. Phys. 21(10), 1535–1540 (1994)

    Article  Google Scholar 

  11. Ciarelli, T.E., Fyhrie, D.P., Schaffler, M.B., Goldstein, S.A.: Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J. Bone Miner. Res. 15(1), 32–40 (2000)

    Article  Google Scholar 

  12. Coussy, O.: Poromechanics, 2nd edn. Wiley, Chichester (2004)

    Google Scholar 

  13. Cowin, S.: The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 4(2), 137–147 (1985)

    Article  Google Scholar 

  14. Cowin, S.C., Cardoso, L.: Fabric dependence of bone ultrasound. Acta Bioeng. Biomech. 12(2), 3–23 (2010)

    Google Scholar 

  15. Cowin, S.C., Cardoso, L.: Fabric dependence of wave propagation in anisotropic porous media. Biomech. Model Mechanobiol. 10(1), 39–65 (2011)

    Article  Google Scholar 

  16. Cowin, S.C., Doty, S.B.: Tissue Mechanics. Springer, New York (2007)

    Book  MATH  Google Scholar 

  17. Damilakis, J., Adams, J.E., Guglielmi, G., Link, T.M.: Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur. Radiol. 20(11), 2707–2714 (2010)

    Article  Google Scholar 

  18. Felsberg, M., Jonsson, E.: Energy tensors: Quadratic, phase invariant image operators. In: Proceedings of the Symposium German Association for Pattern Recognition (DAGM), Vienna. Lecture Notes in Computer Science, vol. 3663, pp. 493–500 (2005)

    Article  Google Scholar 

  19. Förstner, W.: A feature based correspondence algorithm for image matching. Int. Arch. Photogramm. Remote Sens. 26, 150–166 (1986)

    Google Scholar 

  20. Geraets, W.G.: Comparison of two methods for measuring orientation. Bone 23(4), 383–388 (1998)

    Article  Google Scholar 

  21. Geraets, W.G.M., van Ruijven, L.J., Verheij, J.G.C., van der Stelt, P.F., van Eijden, T.M.G.J.: Spatial orientation in bone samples and young’s modulus. J. Biomech. 41(10), 2206–2210 (2008)

    Article  Google Scholar 

  22. Gomberg, B.R., Saha, P.K., Wehrli, F.W.: Topology-based orientation analysis of trabecular bone networks. Med. Phys. 30(2), 158–168 (2003)

    Article  Google Scholar 

  23. Graner, F., Dollet, B., Raufaste, C., Marmottant, P.: Discrete rearranging disordered patterns, part I: robust statistical tools in two or three dimensions. Eur. Phys. J. E: Soft Matter Biol. Phys. 25(4), 349–369 (2008)

    Article  Google Scholar 

  24. Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer, Dordrecht (1995)

    Book  Google Scholar 

  25. Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press, New York (1996)

    Book  MATH  Google Scholar 

  26. Guggenbuhl, P., Bodic, F., Hamel, L., Baslé, M.F., Chappard, D.: Texture analysis of X-ray radiographs of iliac bone is correlated with bone micro-CT. Osteoporos. Int. 17(3), 447–454 (2006)

    Article  Google Scholar 

  27. Guggenbuhl, P., Chappard, D., Garreau, M., Bansard, J.Y., Chales, G., Rolland, Y.: Reproducibility of CT-based bone texture parameters of cancellous calf bone samples: influence of slice thickness. Eur. J. Radiol. 67(3), 514–520 (2008)

    Article  Google Scholar 

  28. Hakulinen, M.A., Töyräs, J., Saarakkala, S., Hirvonen, J., Kröger, H., Jurvelin, J.S.: Ability of ultrasound backscattering to predict mechanical properties of bovine trabecular bone. Ultrasound Med. Biol. 30(7), 919–927 (2004)

    Article  Google Scholar 

  29. Helnwein, P.: Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors. Comput. Methods Appl. Mech. Eng. 190(22–23), 2753–2770 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hollister, S., Kikuchi, N.: A comparison of homogenization and standard mechanics analyses for periodic porous composites. Comput. Mech. 10(2), 73–95 (1992)

    Article  MATH  Google Scholar 

  31. Hollister, S.J., Brennan, J.M., Kikuchi, N.: A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J. Biomech. 27(4), 433–444 (1994)

    Article  Google Scholar 

  32. Homminga, J., Van Rietbergen, B., Lochmüller, E.M., Weinans, H., Eckstein, F., Huiskes, R.: The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34(3), 510–516 (2004)

    Article  Google Scholar 

  33. ÒHorn, B.K.P.: Extended Gaussian images. Proc. IEEE 72(12), 1671–1686 (1984)

    Google Scholar 

  34. Ilic, S., Hackl, K., Gilbert, R.: Application of the multiscale FEM to the modeling of cancellous bone. Biomech. Model Mechanobiol. 9(1), 87–102 (2010)

    Article  Google Scholar 

  35. Jähne, B.: Digital Image Processing, 6th edn. Springer, Berlin (2005)

    Google Scholar 

  36. Jennane, R., Harba, R., Lemineur, G., Bretteil, S., Estrade, A., Benhamou, C.L.: Estimation of the 3D self-similarity parameter of trabecular bone from its 2D projection. Med. Image Anal. 11(1), 91–98 (2007)

    Article  Google Scholar 

  37. Jupp, P.E., Mardia, K.V.: A unified view of the theory of directional statistics, 1975–1988. Int. Stat. Rev. 57(3), 261–294 (1989)

    Article  MATH  Google Scholar 

  38. Kanatani, K.I.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22(2), 149–164 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  39. Keiner, J., Kunis, S., Potts, D.: Using NFFT 3—a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Softw. 36(4), 19:1–19:30 (2009)

    Google Scholar 

  40. Kim, C.H., Zhang, H., Mikhail, G., von Stechow, D., Müller, R., Kim, H.S., Guo, X.E.: Effects of thresholding techniques on microCT-based finite element models of trabecular bone. J. Biomech. Eng. 129(4), 481–486 (2007)

    Google Scholar 

  41. Kinney, J.H., Stölken, J.S., Smith, T., Ryaby, J.T., Lane, N.: An orientation distribution function for trabecular bone. Bone 36(2), 193–201 (2005)

    Article  Google Scholar 

  42. Kleerekoper, M., Villanueva, A.R. Stanciu, J.: The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif. Tissue Int. 37(6), 594–597 (1985)

    Article  Google Scholar 

  43. Klintström, E., Smedby, Ö., Moreno, R., Brismar, T.: Trabecular bone structure parameters from 3D image processing of clinical multi-slice and cone-beam computed tomography data. Skelet. Radiol. 43(2), 197–204 (2014)

    Article  Google Scholar 

  44. Knutsson, H.: Representing local structure using tensors. In: Proceedings of the Scandinavian Conference on Image Analysis (SCIA), Oulu, pp. 244–251 (1989)

    Google Scholar 

  45. Knutsson, H., Westin, C.F., Andersson, M.: Representing local structure using tensors II. In: Proceedings of the Scandinavian Conference on Image Analysis (SCIA), Ystad. Lecture Notes in Computer Science, vol. 6688, pp. 545–556 (2011)

    Article  Google Scholar 

  46. Köthe, U., Felsberg, M.: Riesz-transforms versus derivatives: On the relationship between the boundary tensor and the energy tensor. In: Scale Space and PDE Methods in Computer Vision, Hofgeismar. Lecture Notes in Computer Science, vol. 3459, pp. 179–191 (2005)

    Article  Google Scholar 

  47. Kreider, J.M., Goldstein, S.A.: Trabecular bone mechanical properties in patients with fragility fractures. Clin. Orthop. Relat. Res. 467(8), 1955–1963 (2009)

    Article  Google Scholar 

  48. Launeau, P., Robin, P.Y.F.: Fabric analysis using the intercept method. Tectonophysics 267(1–4), 91–119 (1996)

    Article  Google Scholar 

  49. Launeau, P., Archanjo, C.J., Picard, D., Arbaret, L., Robin, P.Y.F.: Two- and three-dimensional shape fabric analysis by the intercept method in grey levels. Tectonophysics 492(1–4), 230–239 (2010)

    Article  Google Scholar 

  50. Leng, K.D., Yang, Q.: Fabric tensor characterization of tensor-valued directional data: solution, accuracy, and symmetrization. J. Appl. Math. 2012, 516,060–1–22 (2012)

    Google Scholar 

  51. Li, X., Yu, H.: Tensorial characterisation of directional data in micromechanics. Int. J. Solids Struct. 48(14–15), 2167–2176 (2011)

    Article  Google Scholar 

  52. Liu, Y., Saha, P.K., Xu, Z.: Quantitative characterization of trabecular bone micro-architecture using tensor scale and multi-detector CT imaging. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), Nice. Lecture Notes in Computer Science, vol. 7510, pp. 124–131 (2012)

    Article  Google Scholar 

  53. Lofthag-Hansen, S.: Cone beam computed tomography radiation dose and image quality assessments. Swed. Dent. J. Suppl. (209), 4–55 (2009)

    Google Scholar 

  54. Lopes, R., Betrouni, N.: Fractal and multifractal analysis: a review. Med. Image. Anal. 13(4), 634–649 (2009)

    Article  Google Scholar 

  55. Majumdar, S., Lin, J., Link, T., Millard, J., Augat, P., Ouyang, X., Newitt, D., Gould, R., Kothari, M., Genant, H.: Fractal analysis of radiographs: assessment of trabecular bone structure and prediction of elastic modulus and strength. Med. Phys. 26(7), 1330–1340 (1999)

    Article  Google Scholar 

  56. Manenti, G., Capuani, S., Fanucci, E., Assako, E.P., Masala, S., Sorge, R., Iundusi, R., Tarantino, U., Simonetti, G.: Diffusion tensor imaging and magnetic resonance spectroscopy assessment of cancellous bone quality in femoral neck of healthy, osteopenic and osteoporotic subjects at 3T: preliminary experience. Bone 55(1), 7–15 (2013)

    Article  Google Scholar 

  57. Martin, R.B.: Toward a unifying theory of bone remodeling. Bone 26(1), 1–6 (2000)

    Article  Google Scholar 

  58. Mc Donnell, P., Liebschner, M., Tawackoli, W., Hugh, P.M.: Vibrational testing of trabecular bone architectures using rapid prototype models. Med. Eng. Phys. 31(1), 108–115 (2009)

    Article  Google Scholar 

  59. Millard, J., Augat, P., Link, T.M., Kothari, M., Newitt, D.C., Genant, H.K., Majumdar, S.: Power spectral analysis of vertebral trabecular bone structure from radiographs: orientation dependence and correlation with bone mineral density and mechanical properties. Calcif. Tissue Int. 63(6), 482–489 (1998)

    Article  Google Scholar 

  60. Mizuno, K., Matsukawa, M., Otani, T., Takada, M., Mano, I., Tsujimoto, T.: Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(7), 1480–1487 (2008)

    Article  Google Scholar 

  61. Moakher, M.: On the averaging of symmetric positive-definite tensors. J Elast 82, 273–296 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  62. Moreno, R., Borga, M., Smedby, O.: Estimation of trabecular thickness in gray-scale images through granulometric analysis. In: Proceedings of the SPIE Medical Imaging Conference 2012: Image Processing (SPIE), San Diego, vol. 8314, pp. 831451-1–831451-9 (2012)

    Google Scholar 

  63. Moreno, R., Borga, M., Smedby, Ö.: Evaluation of the plate-rod model assumption of trabecular bone. In: Proc of the International Symposium on Biomedical Imaging (ISBI), Barcelona, pp. 470–473 (2012)

    Google Scholar 

  64. Moreno, R., Borga, M., Smedby, Ö.: Generalizing the mean intercept length tensor for gray-level images. Med. Phys. 39(7), 4599–4612 (2012)

    Article  Google Scholar 

  65. Moreno, R., Borga, M., Klintström, E., Brismar, T., Smedby, Ö.: Correlations between fabric tensors computed on cone beam and microcomputed tomography images. In: Computational Vision and Medical Image Processing IV: VIPIMAGE 2013, Funchal. CRC, pp. 393–398 (2013)

    Google Scholar 

  66. Moreno, R., Pizarro, L., Burgeth, B., Weickert, J., Garcia, M.A., Puig, D.: Adaptation of tensor voting to image structure estimation. In: Laidlaw, D., Vilanova, A. (eds.) New Developments in the Visualization and Processing of Tensor Fields, pp. 29–50. Springer, Berlin (2012)

    Chapter  Google Scholar 

  67. Mulvihill, B.M., Prendergast, P.J.: Mechanobiological regulation of the remodelling cycle in trabecular bone and possible biomechanical pathways for osteoporosis. Clin. Biomech. 25(5), 491–498 (2010)

    Article  Google Scholar 

  68. Naili, S., van Rietbergen, B., Sansalone, V., Taylor, D.: Bone remodeling. J. Mech. Behav. Biomed. Mater. 4(6), 827–828 (2011)

    Article  Google Scholar 

  69. Nazer, R.A., Lanovaz, J., Kawalilak, C., Johnston, J.D., Kontulainen, S.: Direct in vivo strain measurements in human bone-a systematic literature review. J. Biomech. 45(1), 27–40 (2012)

    Article  Google Scholar 

  70. Odgaard, A.: Three-dimensional methods for quantification of cancellous bone architecture. Bone 20(4), 315–328 (1997)

    Article  Google Scholar 

  71. Odgaard, A., Kabel, J., van Rietbergen, B., Dalstra, M., Huiskes, R.: Fabric and elastic principal directions of cancellous bone are closely related. J. Biomech. 30(5), 487–495 (1997)

    Article  Google Scholar 

  72. Ostoja-Starzewski, M.: Material spatial randomness: from statistical to representative volume element. Probab. Eng. Mech. 21(2), 112–132 (2006)

    Article  Google Scholar 

  73. Pahr, D.H., Zysset, P.K.: Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomech. Model Mechanobiol. 7(6), 463–476 (2008)

    Article  Google Scholar 

  74. Parkinson, I.H., Fazzalari, N.L.: Methodological principles for fractal analysis of trabecular bone. J. Microsc. 198(Pt 2), 134–142 (2000)

    Article  Google Scholar 

  75. Pentland, A.P.: Fractal-based description of natural scenes. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 661–674 (1984)

    Article  Google Scholar 

  76. Perrot, C., Chevillotte, F., Panneton, R., Allard, J.F., Lafarge, D.: On the dynamic viscous permeability tensor symmetry. J. Acoust. Soc. Am. 124(4), EL210–EL217 (2008)

    Article  Google Scholar 

  77. Podsiadlo, P., Dahl, L., Englund, M., Lohmander, L.S., Stachowiak, G.W.: Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods. Osteoarthr. Cartil. 16(3), 323–329 (2008)

    Article  Google Scholar 

  78. Podshivalov, L., Fischer, A., Bar-Yoseph, P.Z.: 3D hierarchical geometric modeling and multiscale FE analysis as a base for individualized medical diagnosis of bone structure. Bone 48(4), 693–703 (2011)

    Article  Google Scholar 

  79. Riekkinen, O., Hakulinen, M., Lammi, M., Jurvelin, J., Kallioniemi, A., Töyräs, J.: Acoustic properties of trabecular bone—relationships to tissue composition. Ultrasound Med. Biol. 33(9), 1438–1444 (2007)

    Article  Google Scholar 

  80. van Rietbergen, B., Odgaard, A., Kabel, J., Huiskes, R.: Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J. Biomech. 29(12), 1653–1657 (1996)

    Article  Google Scholar 

  81. Rossi, C., Capuani, S., Fasano, F., Alesiani, M., Maraviglia, B.: DTI of trabecular bone marrow. Magn. Reson. Imaging 23(2), 245–248 (2005)

    Article  Google Scholar 

  82. Saha, P.K., Wehrli, F.W.: A robust method for measuring trabecular bone orientation anisotropy at in vivo resolution using tensor scale. Pattern Recognit. 37(9), 1935–1944 (2004)

    Article  Google Scholar 

  83. Saltykov, S.A.: Stereometric Metallography, 2nd edn. Metallurgizdat, Moscow (1958)

    Google Scholar 

  84. Schröder-Turk, G., Kapfer, S., Breidenbach, B., Beisbart, C., Mecke, K.: Tensorial Minkowski functionals and anisotropy measures for planar patterns. J. Microsc. 238(1), 57–74 (2010)

    Article  MathSciNet  Google Scholar 

  85. Schröder-Turk, G.E., Mickel, W., Kapfer, S.C., Klatt, M.A., Schaller, F.M., Hoffmann, M.J.F., Kleppmann, N., Armstrong, P., Inayat, A., Hug, D., Reichelsdorfer, M., Peukert, W., Schwieger, W., Mecke, K.: Minkowski tensor shape analysis of cellular, granular and porous structures. Adv. Mater. 23(22–23), 2535–2553 (2011)

    Article  Google Scholar 

  86. Tabor, Z.: On the equivalence of two methods of determining fabric tensor. Med. Eng. Phys. 31(10), 1313–1322 (2009)

    Article  Google Scholar 

  87. Tabor, Z.: Equivalence of mean intercept length and gradient fabric tensors – 3d study. Med. Eng. Phys. 34(5), 598–604 (2012)

    Article  MathSciNet  Google Scholar 

  88. Tabor, Z., Rokita, E.: Quantifying anisotropy of trabecular bone from gray-level images. Bone 40(4), 966–972 (2007)

    Article  Google Scholar 

  89. Varga, P., Zysset, P.K.: Sampling sphere orientation distribution: an efficient method to quantify trabecular bone fabric on grayscale images. Med. Image. Anal. 13(3), 530–541 (2009)

    Article  Google Scholar 

  90. Vasilić, B., Rajapakse, C.S., Wehrli, F.W.: Classification of trabeculae into three-dimensional rodlike and platelike structures via local inertial anisotropy. Med. Phys. 36(7), 3280–3291 (2009)

    Article  Google Scholar 

  91. Voyiadjis, G.Z., Kattan, P.I.: Advances in Damage Mechanics: Metals and Metal Matrix Composites with an Introduction to Fabric Tensors. Elsevier, Oxford (2006)

    Google Scholar 

  92. Wald, M.J., Vasilić, B., Saha, P.K., Wehrli, F.W.: Spatial autocorrelation and mean intercept length analysis of trabecular bone anisotropy applied to in vivo magnetic resonance imaging. Med. Phys. 34(3), 1110–1120 (2007)

    Article  Google Scholar 

  93. Wang, Q., Ronneberger, O., Burkhardt, H.: Rotational invariance based on Fourier analysis in polar and spherical coordinates. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1715–1722 (2009)

    Article  MATH  Google Scholar 

  94. Whitehouse, W.J.: The quantitative morphology of anisotropic trabecular bone. J. Microsc. 101(2), 153–168 (1974)

    Article  Google Scholar 

  95. Winzenrieth, R., Michelet, F., Hans, D.: Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J. Clin. Densitom. 16(3), 287–296 (2013)

    Article  Google Scholar 

  96. Wolfram, U., Schmitz, B., Heuer, F., Reinehr, M., Wilke, H.J.: Vertebral trabecular main direction can be determined from clinical CT datasets using the gradient structure tensor and not the inertia tensor–a case study. J. Biomech. 42(10), 1390–1396 (2009)

    Article  Google Scholar 

  97. Wolski, M., Podsiadlo, P., Stachowiak, G.W.: Directional fractal signature analysis of trabecular bone: evaluation of different methods to detect early osteoarthritis in knee radiographs. Proc. Inst. Mech. Eng. H. 223(2), 211–236 (2009)

    Article  Google Scholar 

  98. Wolski, M., Podsiadlo, P., Stachowiak, G., Lohmander, L., Englund, M.: Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by directional fractal signature method. Osteoarthr. Cartil. 18(5), 684–90 (2010)

    Article  Google Scholar 

  99. Xu, Z., Saha, P.K., Dasgupta, S.: Tensor scale: An analytic approach with efficient computation and applications. Comput. Vis. Image. Underst. 116(10), 1060–1075 (2012)

    Article  Google Scholar 

  100. Yang, G., Kabel, J., van Rietbergen, B., Odgaard, A., Huiskes, R., Cowin, S.C.: The anisotropic hooke’s law for cancellous bone and wood. J. Elast. 53(2), 125–146 (1998)

    Article  Google Scholar 

  101. Yang, P.F., Brüggemann, G.P., Rittweger, J.: What do we currently know from in vivo bone strain measurements in humans? J. Musculoskelet. Neuronal. Interact. 11(1), 8–20 (2011)

    Google Scholar 

  102. Yi, W.J., Heo, M.S., Lee, S.S., Choi, S.C., Huh, K.H.: Comparison of trabecular bone anisotropies based on fractal dimensions and mean intercept length determined by principal axes of inertia. Med. Biol. Eng. Comput. 45(4), 357–364 (2007)

    Article  Google Scholar 

  103. Zysset, P.K.: A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J. Biomech. 36(10), 1469–1485 (2003)

    Article  Google Scholar 

  104. Zysset, P., Curnier, A.: An alternative model for anisotropic elasticity based on fabric tensors. Mech. Mater. 21(4), 243–250 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moreno, R., Borga, M., Smedby, Ö. (2014). Techniques for Computing Fabric Tensors: A Review. In: Westin, CF., Vilanova, A., Burgeth, B. (eds) Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54301-2_12

Download citation

Publish with us

Policies and ethics