Skip to main content
Log in

Chaotic Hypothesis, Fluctuation Theorem and Singularities

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The chaotic hypothesis has several implications which have generated interest in the literature because of their generality and because a few exact predictions are among them. However its application to Physics problems requires attention and can lead to apparent inconsistencies. In particular there are several cases that have been considered in the literature in which singularities are built in the models: for instance when among the forces there are Lennard-Jones potentials (which are infinite in the origin) and the constraints imposed on the system do not forbid arbitrarily close approach to the singularity even though the average kinetic energy is bounded. The situation is well understood in certain special cases in which the system is subject to Gaussian noise; here the treatment of rather general singular systems is considered and the predictions of the chaotic hypothesis for such situations are derived. The main conclusion is that the chaotic hypothesis is perfectly adequate to describe the singular physical systems we consider, ıe deterministic systems with thermostat forces acting according to Gauss' principle for the constraint of constant total kinetic energy (“isokinetic Gaussian thermostats”), close and far from equilibrium. Near equilibrium it even predicts a fluctuation relation which, in deterministic cases with more general thermostat forces (ıe not necessarily of Gaussian isokinetic nature), extends recent relations obtained in situations in which the thermostatting forces satisfy Gauss' principle. This relation agrees, where expected, with the fluctuation theorem for perfectly chaotic systems. The results are compared with some recent works in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Phys. Rev. Lett. 87:040601 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  2. F. Bonetto, G. Gallavotti, and P. Garrido, Physica D 105:226 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. F. Bonetto, G. Gentile, and V. Mastropietro, Ergodic Theory and Dynamical Systems 20:681 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  4. E. G. D. Cohen and G. Gallavotti, J. Stat. Phys. 96:1343 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Derrida, J. L. Lebowitz, and E. R. Speer, Phys. Rev. Lett. 89:030601 (2002).

    Article  ADS  Google Scholar 

  6. M. Dolowschiák and Z. Kovács, Phys. Rev. E 71:025202(R) (2005).

  7. D. J. Evans, D. J. Searles, and L. Rondoni, Phys. Rev. E 71:056120(+12) (2005).

  8. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. Lett. 71:2401 (1993).

    Article  ADS  MATH  Google Scholar 

  9. W. G. Hoover, Phys. Rev. A 31:1695 (1985).

    Article  ADS  Google Scholar 

  10. G. Gallavotti, Math. Phys. Electron. J. (MPEJ) 1:1 (1995).

    MathSciNet  Google Scholar 

  11. G. Gallavotti, J. Stat. Phys. 84:899 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. G. Gallavotti, Phys. Rev. Lett. 77:4334 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. G. Gallavotti, Statistical Mechanics. A Short Treatise, Springer Verlag, Berlin, 2000.

    Google Scholar 

  14. G. Gallavotti, Chaos 14:680 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. G. Gallavotti, cond-mat/0402676 (2004).

  16. G. Gallavotti, F. Bonetto, and G. Gentile, Aspects of the Ergodic, Qualitative and Statistical Theory of Motion, Springer Verlag, Berlin, 2004.

    MATH  Google Scholar 

  17. G. Gallavotti and E. G. D. Cohen, J. Stat. Phys. 80:931 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. G. Gallavotti and E. G. D. Cohen, Phys. Rev. E 69:035104(R) (+4) (2004).

  19. G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74:2694 (1995).

    Article  ADS  Google Scholar 

  20. G. Gallavotti and D. Ruelle, Commun. Math. Phys. 190:279 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. N. Garnier and S. Ciliberto, Phys. Rev. E 71:060101 (2005).

    Article  ADS  Google Scholar 

  22. G. Gentile, Forum Mathematicum 10:89 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Giuliani, F. Zamponi, and G. Gallavotti, J. Stat. Phys. 119:909 (2005).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. J. Kurchan, J. Phys. A 31:3719 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. J. Lebowitz and H. Spohn, J. Stat. Phys. 95:333 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Maes, J. Stat. Phys. 95:367 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Nosé, J. Chem. Phys. 81:511 (1984).

    Article  ADS  Google Scholar 

  28. D. Ruelle, J. Stat. Phys. 85:1 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. D. Ruelle, J. Stat. Phys. 95:393 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Ruelle, Turbulence, Strange Attractors and Chaos, World Scientific, New-York, 1995.

  31. D. J. Searles and D. J. Evans, J. Chem. Phys. 113:3503 (2000).

    Article  ADS  Google Scholar 

  32. Y. Sinai, Lectures in Ergodic Theory, Lecture notes in Mathematics, Princeton University Press, Princeton, 1977.

  33. Y. Sinai, Russian Math. Surv. 27:21 (1972).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. R. Van Zon and E. G. D. Cohen, Phys. Rev. E 69:056121(+14) (2004).

  35. R. Van Zon and E. G. D. Cohen, Phys. Rev. Lett. 91:110601(+4) (2003).

  36. R. Van Zon, S. Ciliberto, and E. G. D. Cohen, Phys. Rev. Lett. 92:130601(+4) (2004).

  37. F. Zamponi, F. Bonetto, L. F. Cugliandolo, and J. Kurchan, J. Stat. Mech.: Theory Exp. P09013 (2005).

  38. F. Zamponi, G. Ruocco, and L. Angelani, J. Stat. Phys. 115:1655 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zamponi.

Additional information

PACS: 47.52.+j, 05.45.-a, 05.70.Ln, 05.20.-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonetto, F., Gallavotti, G., Giuliani, A. et al. Chaotic Hypothesis, Fluctuation Theorem and Singularities. J Stat Phys 123, 39–54 (2006). https://doi.org/10.1007/s10955-006-9047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9047-5

Key words

Navigation