Skip to main content

Nanotechnology Advancements on Carbon Nanotube/Polypyrrole Composite Electrodes for Supercapacitors

  • Chapter
Handbook of Polymer Nanocomposites. Processing, Performance and Application

Abstract

Supercapacitors are energy boosters for various advanced applications. Carbon nanomaterials based electrochemical double layer capacitors are out-dated due to fewer performances. Redox-type nanocomposite electrodes are promising candidates for high performance supercapacitors. Carbon nanotube/electronically conducting polymer (CNT/ECP) nanocomposite electrodes have achieved much popularity due to their superior electrochemical properties. The nanoscale features of these electrodes have helped to enhance the supercapacitive performance. Among the various CNT/ECP nanocomposites, CNT/polypyrrole nanocomposite electrodes have achieved much importance since they possess high specific capacitance along with high energy density. These electrodes have shown good charge/discharge characteristics along with good environmental and chemical stabilities. Light-weight and flexibility are their added features. These electrodes are very promising candidates for the next generation flexible and wearable electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker HI (1957) Low voltage electrolytic capacitor US2800616, USA

    Google Scholar 

  2. Boos DL (1970) Electrolytic capacitor having carbon paste electrodes US3536963, USA

    Google Scholar 

  3. Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366

    ADS  Google Scholar 

  4. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845

    ADS  Google Scholar 

  5. Schainker RB (2004) Executive overview: energy storage options for a sustainable energy future. IEEE PES General Meeting, Palo Alto, USA, Vol. 2, pp.2309–2314

    Google Scholar 

  6. Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems characteristics and comparisons. Renew Sust Energ Rev 12:1221

    Google Scholar 

  7. Hadjipaschalis I, Poullikkas A, Efthimiou V (2009) Overview of current and future energy storage technologies for electric power applications. Renew Sust Energ Rev 13:1513

    Google Scholar 

  8. Murphy TC, Wright RB (1997) Electrochemical capacitors II. In: Proceedings of the electrochemical society proceedings series, vol 96–25, Pennington, p 258

    Google Scholar 

  9. Lam LT, Louey R (2006) Development of ultra-battery for hybrid-electric vehicle applications. J Power Sources 158:1140

    Google Scholar 

  10. Burke AF (2007) Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc IEEE 95:806

    Google Scholar 

  11. Thounthong P, Rael S, Davat B (2009) Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. J Power Sources 193:376

    Google Scholar 

  12. Chu A, Braatz P (2002) Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization. J Power Sources 112:236

    Google Scholar 

  13. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11

    Google Scholar 

  14. Conway BE (1991) Transition from supercapacitor to battery behaviour in electrochemical energy storage. J Electrochem Soc 138:1539

    Google Scholar 

  15. Conway B (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications (POD). Kluwer Academic/Plenum, New York

    Google Scholar 

  16. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37

    Google Scholar 

  17. Du C, Pan N (2006) High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17:5314

    ADS  Google Scholar 

  18. Wang G, Ling Y, Qian F, Yang X, Liu X-X, Li Y (2011) Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes. J Power Sources 196:5209

    Google Scholar 

  19. Shukla AK, Sampath S, Vijayamohanan K (2000) Electrochemical supercapacitors: energy storage beyond batteries. Curr Sci 79:1656

    Google Scholar 

  20. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode material. Int J Hydrogen Energ 34:4889

    Google Scholar 

  21. Jamnik J, Maier J (2003) Nanocrystallinity effects in lithium battery materials aspects of nano-ionics part IV. Phys Chem Chem Phys 5:5215

    Google Scholar 

  22. Balaya P, Bhattacharyya AJ, Jamnik J, Zhukovskii YF, Kotomin EA, Maier J (2006) Nano-ionics in the context of lithium batteries. J Power Sources 159:171

    Google Scholar 

  23. Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A 82:599

    ADS  Google Scholar 

  24. Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. J Electrochem Soc 17:34

    Google Scholar 

  25. Naoi K, Naoi W, Aoyagi S, Miyamoto J-I, Kamino T (2013) New generation nanohybrid supercapacitor. Acc Chem Res 46:1075

    Google Scholar 

  26. Du PA, Plitz I, Menocal S, Amatucci G (2003) A comparative study of Li-ion battery, supercapacitor and non-aqueous asymmetric hybrid devices for automotive applications. J Power Sources 115:171

    Google Scholar 

  27. Li H, Cheng L, Xia Y (2005) A hybrid electrochemical supercapacitor based on a 5V Li-ion battery cathode and active carbon. Electrochem Solid State Lett 8:A433

    Google Scholar 

  28. Frackowiak E, Jurewicz K, Delpeux S, Béguin F (2001) Nanotubular materials for supercapacitors. J Power Sources 97–98:822

    Google Scholar 

  29. Mastragostino M, Arbizzani C, Soavi F (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ion 148:493

    Google Scholar 

  30. Laforgue A, Simon P, Fauvarque JF, Mastragostino M, Soavi F, Sarrau JF, Lailler P, Conte M, Rossi E, Saguatti S (2003) Activated carbon/conducting polymer hybrid supercapacitors. J Electrochem Soc 150:A645

    Google Scholar 

  31. Jurewicz K, Delpeux S, Bertagna V, Beguin F, Frackowiak E (2001) Supercapacitors from nanotubes/polypyrrole composites. Chem Phys Lett 347:36

    ADS  Google Scholar 

  32. Li J, Cheng X, Shashurin A, Keidar M (2012) Review of Electrochemical capacitors based on carbon nanotubes and graphene. Graphene 1:1

    Google Scholar 

  33. Miller JR, Burke AF (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem Soc Interface 17:53

    Google Scholar 

  34. Tanahashi I, Yoshida A, Nishino A (1990) Comparison of the electrochemical properties of electric double-layer capacitors with an aqueous electrolyte and with a non-aqueous electrolyte. Bull Chem Soc Jpn 63:3611

    Google Scholar 

  35. Fic K, Lota G, Frackowiak E (2010) Electrochemical properties of supercapacitors operating in aqueous electrolyte with surfactants. Electrochim Acta 55:7484

    Google Scholar 

  36. Zheng JP, Huang J, Jow TR (1997) The limitations of energy density for electrochemical capacitors. J Electrochem Soc 144:2026

    Google Scholar 

  37. Buzzeo MC, Evans RG, Compton RG (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry – A review. Chem Phys Chem 5:1106

    Google Scholar 

  38. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183

    Google Scholar 

  39. Ciuffa F, Croce F, DEpifanio A, Panero S, Scrosati B (2004) Lithium and proton conducting gel-type membranes. J Power Sources 127:53

    Google Scholar 

  40. Cornet FN, Geble G, Mercier R, Pineri M, Silion B (1997) In: Savogado O, Roberge PR (eds) New materials for fuel cell and modern battery systems II. Ecole Polytechnique de Montreal, Montreal, p 818

    Google Scholar 

  41. Steck AE, Stone C (1997) In: Savogado O, (Ed.) New materials for fuel cell and modern battery systems II. Ecole Polytechnique de Montreal, Montreal

    Google Scholar 

  42. Endo M, Kim YJ, Takeda T, Maeda T, Hayashi T, Koshiba K, Hara H, Dresselhaus MS (2001) Poly(vinylidene chloride)-based carbon as an electrode material for high power capacitors with an aqueous electrolyte. J Electrochem Soc 148:A1135

    Google Scholar 

  43. Shiraishi S, Kurihara H, Tsubota H, Oya A, Soneda Y, Yamada Y (2001) Electric double layer capacitance of highly porous carbon derived from lithium metal and polytetrafluoroethylene. Electrochem Solid State Lett 4:A5

    Google Scholar 

  44. Weng TC, Teng H (2001) Characterization of high porosity carbon electrodes derived from mesophase pitch for electric double-layer capacitors. J Electrochem Soc 148:A368

    Google Scholar 

  45. Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483

    Google Scholar 

  46. Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70:1480

    ADS  Google Scholar 

  47. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Academic Press, San Diego

    Google Scholar 

  48. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes - the route towards applications. Science 297:787

    ADS  Google Scholar 

  49. Frackowiak E, Jurewicz K, Szostak K, Delpeux S, Beguin F (2002) Nanotubular materials as electrodes for supercapacitors. Fuel Process Technol 77–78:213

    Google Scholar 

  50. Emmenegger C, Mauron P, Züttel A, Nützenadel C, Schneuwly A, Gallay R, Schlapbach L (2000) Carbon nanotube synthesized on metallic substrates. Appl Surf Sci 162–163:452

    Google Scholar 

  51. Chatterjee AK, Sharon M, Banerjee R, Neumann-Spallart M (2003) CVD synthesis of carbon nanotubes using a finely dispersed cobalt catalyst and their use in double layer electrochemical capacitors. Electrochim Acta 48:3439

    Google Scholar 

  52. Frackowiak E, Metenier K, Bertagna V, Beguin F (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 77:2421

    ADS  Google Scholar 

  53. Diederich L, Barborini E, Piseri P, Podesta A, Milani P, Schneuwly A, Gallay R (1999) Supercapacitors based on nanostructured carbon electrodes grown by cluster-beam deposition. Appl Phys Lett 75:2662

    ADS  Google Scholar 

  54. An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SC, Lee YH (2001) Supercapacitors using single-walled carbon nanotube electrodes. Adv Mater 13:497

    Google Scholar 

  55. Hasobe T, Fukuzumi S, Kamat PV (2006) Stacked-cup carbon nanotubes for photo-electrochemical solar Cells. Angew Chem Int Ed 45:755

    Google Scholar 

  56. Miller AJ, Hatton RA, Silva SRP (2006) Interpenetrating multiwall carbon nanotubes electrodes for organic solar cells. Appl Phys Lett 89:133117

    ADS  Google Scholar 

  57. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Aligned multiwalled carbon nanotube membranes. Science 303:62

    ADS  Google Scholar 

  58. Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature 438:44

    ADS  Google Scholar 

  59. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104:13574

    ADS  Google Scholar 

  60. Frackowiak E, Bcguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40:1775

    Google Scholar 

  61. Zhang H, Cao GP, Yang YS (2007) Using a cut-paste method to prepare a carbon nanotube fur electrode. Nanotechnology 18:195607

    ADS  Google Scholar 

  62. Liu CG, Liu M, Li F, Cheng HM (2008) Frequency response characteristic of single-walled carbon nanotubes as supercapacitor electrode material. Appl Phys Lett 92:143108

    ADS  Google Scholar 

  63. Shi R, Jiang L, Pan C (2011) A single-step process for preparing supercapacitor electrodes from carbon nanotubes. Soft Nanosci Lett 1:11

    Google Scholar 

  64. Park D, Kim YH, Lee JK (2003) Synthesis of carbon nanotubes on metallic substrates by a sequential combination of PECVD and thermal CVD. Carbon 41:1025

    Google Scholar 

  65. Zhang H, Cao GP, Wang ZY, Yang YS, Gu ZN (2008) Electrochemical capacitive properties of carbon nanotube arrays directly grown on glassy carbon and tantalum foils. Carbon 46:822

    Google Scholar 

  66. Papakonstantinou P, Kern R, Robinson L, Murphy H, Irvine J, McAdams E, McLaughlin J, McNally T (2005) Fundamental electrochemical properties of carbon nanotube electrodes. Fullerenes, nanotubes. Carbon Nanostruct 13:91

    Google Scholar 

  67. Boyea JM, Camacho RE, Turano SP, Ready WJ (2007) Carbon nanotube-based supercapacitors: Technologies and markets. Nanotech L and Bus 4:19

    Google Scholar 

  68. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284:1340

    ADS  Google Scholar 

  69. Zakhidov AA, Suh D-S, Kuznetsov AA, Barisci JN, Muñoz E, Dalton AB, Collins S, Ebron VH, Zhang M, Ferraris JP, Zakhidov AA, Baughman RH (2009) Electrochemically tuned properties for electrolyte-free carbon nanotube sheets. Adv Funct Mater 19:2266

    Google Scholar 

  70. Niu Z, Zhou W, Chen J, Feng G, Li H, Ma W, Li J, Dong H, Ren Y, Zhao D, Xie S (2011) Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ Sci 4:1440

    Google Scholar 

  71. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-Power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11:387

    Google Scholar 

  72. Yi B, Chen X, Guo K, Xu L, Chen C, Yan H, Chen J (2011) High-performance carbon nanotube-implanted mesoporous carbon spheres for supercapacitors with low series resistance. Mater Res Bull 46:2168

    Google Scholar 

  73. Yang C, Liu P (2010) Water-dispersed polypyrrole nanospheres via chemical oxidative polymerization in the presence of castor oil sulfate. Synth Met 160:345

    Google Scholar 

  74. Kaynak A, Wang L, Hurren C, Wang X (2002) Characterization of conductive polypyrrole coated wool yarns. Fiber Polym 3:24

    Google Scholar 

  75. Laforgue A, Robitaille L (2010) Deposition of ultrathin coatings of polypyrrole and poly(3,4-ethylenedioxythiophene) onto electrospun nanofibers using a vapor-phase polymerization method. Chem Mater 22:2474

    Google Scholar 

  76. Rashidzadeh A, Olad A, Ahmadi S (2013) Preparation and characterization of polypyrrole/clinoptilolite nanocomposite with enhanced electrical conductivity by surface polymerization method. Polym Eng Sci 53:970

    Google Scholar 

  77. Jiang L, Jun H-K, Hoh Y-S, Lim JO, Lee D-D, Huh J-S (2005) Sensing characteristics of polypyrrole–poly(vinyl alcohol) methanol sensors prepared by in situ vapor state polymerization. Sens Actuator B 105:132

    Google Scholar 

  78. Yin Z, Zheng Q (2012) Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: An overview. Adv Energy Mater 2:179

    Google Scholar 

  79. Shi Z, Phillips GO, Yang G (2013) Nanocellulose electroconductive composites. Nanoscale 5:3194

    ADS  Google Scholar 

  80. Diaz AF, Kanazawa KK, Gardini GP (1979) Electrochemical polymerization of pyrrole. J Chem Soc Chem Commun 635, doi:10.1039/c39790000635

    Google Scholar 

  81. Kanazawa KK, Diaz AF, Geiss RH, Gill WD, Kwak JF, Logan JA, Rabolt JF, Street GB (1979) ‘Organic metals’: polypyrrole, a stable synthetic ‘metallic’ polymer. J Chem Soc Chem Commun 854, doi:10.1039/c39790000854

    Google Scholar 

  82. Goel S, Gupta A, Singh KP, Mehrotra R, Kandpal HC, Srikanth K (2006) Structural and optical studies of polypyrrole nanostructures. Int J Appl Chem 2:157–158

    Google Scholar 

  83. Liu Y, Chu Y, Yang L (2006) Adjusting the inner-structure of polypyrrole nanoparticles through microemulsion polymerization. Mater Chem Phys 98:304

    ADS  Google Scholar 

  84. Ehrenbeck C, Jüttner K (1996) Ion conductivity and permselectivity measurements of polypyrrole membranes at variable states of oxidation. Electrochim Acta 41:1815

    Google Scholar 

  85. Arrieta Almario ÁA, Vieira RL (2006) Study of polypyrrole films modified with copper and silver microparticles by electrochemical cementation process. J Chil Chem Soc 51:971

    Google Scholar 

  86. Sharma AK, Kim JH, Lee YS (2009) An efficient synthesis of polypyrrole/carbon fiber composite nano-thin films. Int J Electrochem Sci 4:1560

    Google Scholar 

  87. Et Taouil A, Lallemand F, Hihn J-Y, Hallez L, Moutarlier V, Blondeau-Patissier V (2011) Relation between structure and ions mobility in polypyrrole electrosynthesized under high frequency ultrasound irradiation. Electrochim Acta 58:67

    Google Scholar 

  88. Jang J, Oh JH (2004) A facile synthesis of polypyrrole nanotubes using a template-mediated vapor deposition polymerization and the conversion to carbon nanotubes. Chem Commun 882, doi:10.1039/b316083a

    Google Scholar 

  89. Yang X, Dai T, Zhu Z, Lu Y (2007) Electrochemical synthesis of functional polypyrrole nanotubes via a self-assembly process. Polymer 48:4021

    Google Scholar 

  90. Zhang H, Wang J, Shan Q, Wang Z, Wang S (2013) Tunable electrode morphology used for high performance supercapacitor: polypyrrole nanomaterials as model materials. Electrochim Acta 90:535

    Google Scholar 

  91. Selvan ST, Spatz JP, Klok H-A, Möller M (1998) Gold-polypyrrole core-shell particles in diblock copolymer micelles. Adv Mater 10:132

    Google Scholar 

  92. Hao L, Zhu C, Chen C, Kang P, Hu Y, Fan W, Chen Z (2003) Fabrication of silica core–conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates. Synth Met 139:391

    Google Scholar 

  93. Mi H, Zhang X, Ye X, Yang S (2008) Preparation and enhanced capacitance of core–shell polypyrrole/polyaniline composite electrode for supercapacitors. J Power Sources 176:403

    Google Scholar 

  94. Xing S, Tan LH, Chen T, Yang Y, Chen H (2009) Facile fabrication of triple-layer (Au@Ag)@polypyrrole core–shell and (Au@H2O)@polypyrrole yolk–shell nanostructures. Chem Commun 1653, doi:10.1039/b821125f

    Google Scholar 

  95. Zhang J, Liu X, Zhang L, Cao B, Wu S (2013) Reactive template synthesis of polypyrrole nanotubes for fabricating metal/conducting polymer nanocomposites. Macromol Rapid Commun 34:528

    Google Scholar 

  96. Choi M, Lim B, Jang J (2008) Synthesis of mesostructured conducting polymer-carbon nanocomposites and their electrochemical performance. Macromol Res 16:200, doi:10.1039/b821125f

    Google Scholar 

  97. Faye A, Dione G, Dieng MM, Aaron JJ, Cachet H, Cachet C (2010) Usefulness of a composite electrode with a carbon surface modified by electrosynthesized polypyrrole for supercapacitor applications. J Appl Electrochem 40:1925

    Google Scholar 

  98. Zhang J, Kong L-B, Cai J-J, Luo Y–C, Kang L (2010) Nano-composite of polypyrrole/modified mesoporous carbon for electrochemical capacitor application. Electrochim Acta 55:8067

    Google Scholar 

  99. Pacheco-Catalan CDE, Smit MA, Morales E (2011) Characterization of composite mesoporous carbon/conducting polymer electrodes prepared by chemical oxidation of gas-phase absorbed monomer for electrochemical capacitors. Int J Electrochem Sci 6:78

    Google Scholar 

  100. Wood GA, Iroh JO (1996) Efficiency of electropolymerization of pyrrole onto carbon fibers. Synth Met 80:73

    Google Scholar 

  101. Lin B, Sureshkumar R, Kardos JL (2001) Electropolymerization of pyrrole on PAN-based carbon fibers: experimental observations and a multiscale modeling approach. Chem Eng Sci 56:6563

    Google Scholar 

  102. Fletcher BL, McKnight TE, Fowlkes JD, Allison DP, Simpson ML, Doktycz MJ (2007) Controlling the dimensions of carbon nanofiber structures through the electropolymerization of pyrrole. Synth Met 157:282

    Google Scholar 

  103. Dumanlı A, Erden A, Yürüm Y (2012) Development of supercapacitor active composites by electrochemical deposition of polypyrrole on carbon nanofibres. Polym Bull 68:1395

    Google Scholar 

  104. Davoglio RA, Biaggio SR, Bocchi N, Rocha-Filho RC (2013) Flexible and high surface area composites of carbon fiber, polypyrrole, and poly(DMcT) for supercapacitor electrodes. Electrochim Acta 93:93

    Google Scholar 

  105. Biswas S, Drzal LT (2010) Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 22:5667

    Google Scholar 

  106. Zhang LL, Zhao S, Tian XN, Zhao XS (2010) Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes. Langmuir 26:17624

    Google Scholar 

  107. Bose S, Kim NH, Kuila T, Lau KT, Lee JH (2011) Electrochemical performance of a graphene–polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology 22:295202

    Google Scholar 

  108. Davies A, Audette P, Farrow B, Hassan F, Chen Z, Choi J-Y, Yu A (2011) Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J Phys Chem C 115:17612

    Google Scholar 

  109. Li L, Xia K, Li L, Shang S, Guo Q, Yan G (2012) Fabrication and characterization of free-standing polypyrrole/graphene oxide nanocomposite paper. J Nanopart Res 14:1

    Google Scholar 

  110. Sahoo S, Karthikeyan G, Nayak GC, Das CK (2011) Electrochemical characterization of in situ polypyrrole coated graphene nanocomposites. Synth Met 161:1713

    Google Scholar 

  111. Khomenko V, Frackowiak E, Béguin F (2005) Determination of the specific capacitance of conducting polymer/ nanotubes composite electrodes using different cell configurations. Electrochim Acta 50:2499

    Google Scholar 

  112. Xiao Q, Zhou X (2003) The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochim Acta 48:575

    Google Scholar 

  113. Wu TM, Lin SH (2006) Synthesis, characterization, and electrical properties of polypyrrole/multiwalled carbon nanotube composites. J Polym Sci Pol Chem 44:6449

    MathSciNet  Google Scholar 

  114. Turcu R, Darabont A, Nan A, Aldea N, Macovei D, Bica D, Vekas L, Pana O, Soran M, Koos A (2006) New polypyrrole-multiwall carbon nanotubes hybrid materials. J Optoelectron Adv Mater 8:643

    Google Scholar 

  115. Wu T-M, Chang H-L, Lin Y-W (2009) Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity. Compos Sci Technol 69:639

    Google Scholar 

  116. Paul S, Kim JH, Kim DW (2011) Cycling performance of supercapacitors assembled with polypyrrole/multi-walled carbon nanotube/conductive carbon composite electrodes. J Electrochem Sci Technol 2:91

    Google Scholar 

  117. Huyen DN, Tung NT, Vinh TD, Thien ND (2012) Synergistic effects in the gas sensitivity of polypyrrole/single wall carbon nanotube composites. Sensors 12:7965

    Google Scholar 

  118. Zhou C, Kumar S, Doyle CD, Tour JM (2005) Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes. Chem Mater 17:1997

    Google Scholar 

  119. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153:413

    Google Scholar 

  120. Mi H, Zhang X, Xu Y, Xiao F (2010) Synthesis, characterization and electrochemical behaviour of polypyrrole/carbon nanotube composites using organometallic-functionalized carbon nanotubes. Appl Surf Sci 256:2284

    ADS  Google Scholar 

  121. Oh J, Kozlov ME, Kim BG, Kim H-K, Baughman RH, Hwang YH (2008) Preparation and electrochemical characterization of porous swnt-ppy nanocomposite sheets for supercapacitor applications. Synth Met 158:638

    Google Scholar 

  122. Lee H, Kim H, Cho MS, Choi J, Lee Y (2011) Fabrication of polypyrrole/carbon nanotube composite electrode on ceramic fabric for supercapacitor applications. Electrochim Acta 56:7460

    Google Scholar 

  123. Hu Y, Zhao Y, Li Y, Li H, Shao H, Qu L (2012) Defective super-long carbon nanotubes and polypyrrole composite for high-performance supercapacitor electrodes. Electrochim Acta 66:279

    Google Scholar 

  124. Fang Y, Liu J, Yu DJ, Wicksted JP, Kalkan K, Topal CO, Flanders BN, Wu J, Li J (2010) Self-supported supercapacitor membranes: polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. J Power Sources 195:674

    Google Scholar 

  125. Ansaldo A, Castagnola E, Maggiolini E, Fadiga L, Ricci D (2011) Superior electrochemical performance of carbon nanotubes directly grown on sharp microelectrodes. ACS Nano 5:2206

    Google Scholar 

  126. Kmecko T, Hughes G, Cauller L, Lee JB, Romero-Ortega M (2006) Nanocomposites for neural interfaces. MRS Proc 926 null. 926:0926-CC04-06, doi:10.1557/PROC-0926-CC04-06

    Google Scholar 

  127. Green RA, Williams CM, Lovell NH, Poole-Warren LA (2008) Novel neural interface for implant electrodes: improving electroactivity of polypyrrole through mwnt incorporation. J Mater Sci Mater Med 19:1625

    Google Scholar 

  128. Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating improves neuronal recordings. Nat Nano 3:434

    Google Scholar 

  129. Lu Y, Li T, Zhao X, Li M, Cao Y, Yang H, Duan YY (2010) Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces. Biomaterials 31:5169

    Google Scholar 

  130. Peng C, Jin J, Chen GZ (2007) A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim Acta 53:525

    Google Scholar 

  131. Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH (2002) Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem Mater 14:1610

    Google Scholar 

  132. Wang J, Xu Y, Chen X, Sun X (2007) Capacitance properties of single wall carbon nanotube/polypyrrole composite films. Compos Sci Technol 67:2981

    Google Scholar 

  133. Sun X, Xu Y, Wang J, Mao S (2012) The composite film of polypyrrole and functionalized multi-walled carbon nanotubes as an electrode material for supercapacitors. Int J Electrochem Sci 7:3205

    Google Scholar 

  134. Kim J-Y, Kim KH, Kim KB (2008) Fabrication and electro-chemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size. J Power Sources 176:396

    Google Scholar 

  135. Wang J, Xu Y, Yan F, Zhu J, Wang J, Xiao F (2010) Capacitive characteristics of nanocomposites of conducting polypyrrole and functionalized carbon nanotubes: effects of in situ dopant and film thickness. J Solid State Electrochem 14:1565

    Google Scholar 

  136. An KH, Jeon KK, Heo JK, Lim SC, Bae DJ, Lee YH (2002) High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J Electrochem Soc 149:A1058

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support provided by Indian Space Research Organization, India for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cherusseri, J., Sharma, R., Kar, K.K. (2015). Nanotechnology Advancements on Carbon Nanotube/Polypyrrole Composite Electrodes for Supercapacitors. In: Kar, K., Pandey, J., Rana, S. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45229-1_22

Download citation

Publish with us

Policies and ethics