Skip to main content

The Adipose Organ: Morphological Perspectives of Adipose Tissues

  • Chapter
  • First Online:
Stem Cells in Aesthetic Procedures

Abstract

Adipose tissue of an individual, generally regarded as connective tissues without a specific anatomy, consists of many adipose depots that are organized to form a large organ with discrete anatomy, specific vascular and nerve supplies, complex cytology, and high physiological plasticity. The authors discuss anatomy and morphology, plasticity of adipose tissue, plasticity of adipose tissue and adipose stem cells, ADSCs and their use in regenerative medicine, plasticity of adipose tissue and the role of mature adipocytes (the phenomenon of transdifferentiation), white to brown transdifferentiation, and adipo-epithelial transdifferentiation. Adipose tissue, despite its simple appearance and morphology, represents a complex structure with highly plastic properties. These capacities are due to the nature of its parenchymal cells, the adipocytes, that are unique specialized cells involved in fuel storage, management and endocrine, nervous, and immune function and that are even provided with the ability to reprogram their genes and transdifferentiate into cells with a different morphology and physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cinti S. The adipose organ. Prostaglandins Leukot Essent Fatty Acids. 2005;73(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  2. Cinti S. Between brown and white: novel aspects of adipocyte differentiation. Ann Med. 2011;43(2):104–15.

    Article  PubMed  Google Scholar 

  3. Cinti S. The adipose organ: morphological perspectives of adipose tissues. Proc Nutr Soc. 2001;60(3):319–28.

    Article  CAS  PubMed  Google Scholar 

  4. Wasserman F. The fat organs of man: development, structure and systematic place of the so called adipose tissue. Z Zellforsch Microskop Anat Abt Histochem. 1926;3:325–9.

    Google Scholar 

  5. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444(7121):847–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Friedman JM. Leptin at 14 y of age: an ongoing story. Am J Clin Nutr. 2009;89(3):973S–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Himms-Hagen J. Brown adipose tissue and cold-acclimation. In: Trayhurn P, Nicholls DG, editors. Brown adipose tissue. London: Edward Arnold; 1986. p. 214.

    Google Scholar 

  8. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359.

    Article  CAS  PubMed  Google Scholar 

  9. Ricquier D. Fundamental mechanisms of thermogenesis. C R Biol. 2006;329(8):578–86.

    Article  CAS  PubMed  Google Scholar 

  10. Murano I, Morroni M, Zingaretti MC, Oliver P, Sánchez J, Fuster A, Picó C, Palou A, Cinti S. Morphology of ferret subcutaneous adipose tissue after 6-month daily supplementation with oral beta-carotene. Biochim Biophys Acta. 2005;1740(2):305–12.

    Article  CAS  PubMed  Google Scholar 

  11. Murano I, Barbatelli G, Giordano A, Cinti S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat. 2009;214(1):171–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Vitali A, Murano I, Zingaretti MC, Frontini A, Ricquier D, Cinti S. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res. 2012;53(4):619–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Murano I, Barbatelli G, Parisani V, Latini C, Muzzonigro G, Castellucci M, Cinti S. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res. 2008;49(7):1562–8.

    Article  CAS  PubMed  Google Scholar 

  14. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab. 2010;298(6):E1244–53.

    Article  CAS  PubMed  Google Scholar 

  15. Ishibashi J, Seale P. Medicine. Beige can be slimming. Science. 2010;5982:1113–4.

    Article  Google Scholar 

  16. Petrovic V, Buzadzic B, Korac A, Vasilijevic A, Jankovic A, Korac B. NO modulates the molecular basis of rat interscapular brown adipose tissue thermogenesis. Comp Biochem Physiol C Toxicol Pharmacol. 2010;152(2):147–59.

    Article  PubMed  Google Scholar 

  17. Waldén TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. J. Am J Physiol Endocrinol Metab. 2012;302(1):E19–31.

    Article  PubMed  Google Scholar 

  18. Cinti S. The adipose organ. Milan: Kurtis; 1999.

    Google Scholar 

  19. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12): 4279–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Fust IM, Johnson PR, Hirsch J. Adipose tissue regeneration following lipectomy. Science. 1977;197(4301): 391–3.

    Article  Google Scholar 

  21. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz B, Bergmann O, Blomqvist L, Hoffstedt J, Britton T, Concha H, Hassan M, Ryden M, Frisen J, Arner P. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):83–787.

    Article  Google Scholar 

  22. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347–55.

    Article  CAS  PubMed  Google Scholar 

  23. Prins JB, O’Rahilly S. Regulation of adipose cell number in man. Clin Sci. 1997;92(1):3–11.

    CAS  PubMed  Google Scholar 

  24. Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ. The biology of white adipocyte proliferation. Obes Rev. 2001;2(4):239–54.

    Article  CAS  PubMed  Google Scholar 

  25. Shackelford GD, Barton LL, McAlister WH. Calcified subcutaneous fat necrosis in infancy. J Can Assoc Radiol. 1975;26(3):203–7.

    CAS  PubMed  Google Scholar 

  26. Clarke PR, Williams HI. Ossification in extradural fat in Paget’s disease of the spine. Br J Surg. 1975;62(7):571–2.

    Article  CAS  PubMed  Google Scholar 

  27. Kaplan FS, Hahn GV, Zasloff MA. Heterotopic ossification: two rare forms and what they can teach us. J Am Acad Orthop Surg. 1994;2(5):288–96.

    PubMed  Google Scholar 

  28. Suga H, Eto H, Inoue K, Aoi N, Kato H, Araki J, Higashino T, Yoshimura K. Cellular and molecular features of lipoma tissue: comparison with normal adipose tissue. Br J Dermatol. 2009;161(4):819–25.

    Article  CAS  PubMed  Google Scholar 

  29. Tontonoz P, Singer S, Forman BM, Sarraf P, Fletcher JA, Fletcher CD, Brun RP, Mueler E, Altiok S, Oppenheim H, Evans RM, Spiegelman BM. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid x receptor. Proc Natl Acad Sci U S A. 1997;94(1):237–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    Article  CAS  PubMed  Google Scholar 

  31. Zuk PA. The adipose-derived stem cells: looking back and looking ahead, 2010. Mol Biol Cell. 2010;21(11):1783–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells: the great WAT hope. Trends Endocrinol Metab. 2012;23(6):270–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Jung SN, Rhie JW, Kwon H, Jun YJ, Seo JW, Yoo G, Oh DY, Ahn ST, Woo J, Oh J. In vivo cartilage formation using chondrogenic-differentiated human adipose-derived mesenchymal stem cells mixed with fibrin glue. J Craniofac Surg. 2010;21(2):468–72.

    Article  PubMed  Google Scholar 

  34. Uysal AC, Mizuno H. Tendon regeneration and repair with adipose derived stem cells. Curr Stem Cell Res Ther. 2010;5(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  35. Wu G, Song Y, Zheng X, Jiang Z. Adipose-derived stromal cell transplantation for treatment of stress urinary incontinence. Tissue Cell. 2011;43(4):246–53.

    Article  PubMed  Google Scholar 

  36. di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF. Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg. 2010;63(9):1544–52.

    Article  PubMed  Google Scholar 

  37. Kim SJ, Park KC, Lee JU, Kim KJ, Kim DG. Therapeutic potential of adipose tissue-derived stem cells for liver failure according to the transplantation routes. J Korean Surg Soc. 2011;81(3):176–86.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, Andre M, Cousin B, Gourmelon P, Benderitter M, Casteilla L, Tamarat R. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol. 2009;29(4):503–10.

    Article  CAS  PubMed  Google Scholar 

  39. Jeong JH. Adipose stem cells and skin repair. Curr Stem Cell Res Ther. 2010;5(2):137–40.

    Article  CAS  PubMed  Google Scholar 

  40. Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Pénicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109(5):656–63.

    Article  PubMed  Google Scholar 

  41. Casteilla L, Planat-Bénard V, Dehez S, De Barros S, Barreau C, André M. Endothelial and cardiac regeneration from adipose tissues. Methods Mol Biol. 2011;702:269–87.

    Article  CAS  PubMed  Google Scholar 

  42. Mazo M, Gavira JJ, Pelacho B, Prosper F. Adipose-derived stem cells for myocardial infarction. J Cardiovasc Transl Res. 2011;4(2):145–53.

    Article  PubMed  Google Scholar 

  43. Nakao N, Nakayama T, Yahata T, Muguruma Y, Saito S, Miyata Y, Yamamoto K, Naoe T. Adipose tissue-derived mesenchymal stem cells facilitate hematopoiesis in vitro and in vivo: advantages over bone marrow-derived mesenchymal stem cells. Am J Pathol. 2010;177(2):547–54.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C, Cousin B, Abbal M, Laharrague P, Penicaud L, Casteilla L, Blancher A. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129(1):118–29.

    Article  PubMed  Google Scholar 

  45. Yañez R, Lamana ML, García-Castro J, Colmenero I, Ramírez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24(11):2582–9.

    Article  PubMed  Google Scholar 

  46. Riordan NH, Ichim TE, Min WP, Wang H, Solano F, Lara F, Alfaro M, Rodriguez JP, Harman RJ, Patel AN, Murphy MP, Lee RR, Minev B. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med. 2009;7:29.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgad M. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum. 2009;60(4):1006–19.

    Article  CAS  PubMed  Google Scholar 

  48. Kim JH, Jung M, Kim HS, Kim YM, Choi EH. Adipose-derived stem cells as a new therapeutic modality for ageing skin. Exp Dermatol. 2011;20(5):383–7.

    Article  CAS  PubMed  Google Scholar 

  49. Peçanha R, Bagno LL, Ribeiro MB, Robottom Ferreira AB, Moraes MO, Zapata-Sudo G, Kasai-Brunswick TH, Campos-de-Carvalho AC, Goldenberg RC, Saar Werneck-de-Castro JP. Adipose-derived stem-cell treatment of skeletal muscle injury. J Bone Joint Surg Am. 2012;94(7):609–17.

    Article  PubMed  Google Scholar 

  50. Lee CS, Burnsed OA, Raghuram V, Kalisvaart J, Boyan BD, Schwartz Z. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration. Stem Cell Res Ther. 2012;3(4):35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Carney EF. Regenerative medicine: adipose stem cells fail to boost cartilage repair in rat. Nat Rev Rheumatol. 2012;8(10):563.

    Article  PubMed  Google Scholar 

  52. Lendeckel S, Jödicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, Hedrick MH, Berthold L, Howaldt HP. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg. 2004;32(6):370–3.

    Article  PubMed  Google Scholar 

  53. Gir P, Oni G, Brown S, Mojallal A, Rohrich R. Human adipose stem cells: current clinical applications. Plast Reconstr Surg. 2012;129(6):1277–90.

    Article  CAS  PubMed  Google Scholar 

  54. Kamakura T, Ito K. Autologous cell-enriched fat grafting for breast augmentation. Aesthetic Plast Surg. 2011;35(6):1022–30.

    Article  PubMed  Google Scholar 

  55. Yoshimura K, Sato K, Aoi N, Kurita M, Inoue K, Suga H, Eto H, Kato H, Hirohi T, Harii K. Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg. 2008;34(9):1178–85.

    CAS  PubMed  Google Scholar 

  56. Rigotti G, Marchi A, Galiè M, Baroni G, Benati D, Krampera M, Pasini A, Sbarbati A. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 2007;119(5): 1409–22.

    Article  CAS  PubMed  Google Scholar 

  57. Zanetti AS, Sabliov C, Gimble JM, Hayes DJ. Human adipose-derived stem cells and three-dimensional scaffold constructs: a review of the biomaterials and models currently used for bone regeneration. J Biomed Mater Res B Appl Biomater. 2012; 101(1):187–99.

    Google Scholar 

  58. García-Olmo D, García-Arranz M, García LG, Cuellar ES, Blanco IF, Prianes LA, Montes JA, Pinto FL, Marcos DH, García-Sancho L. Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn’s disease: a new cell-based therapy. Int J Colorectal Dis. 2003;18(5):451–4.

    Article  PubMed  Google Scholar 

  59. Herreros MD, Garcia-Arranz M, Guadalajara H, De-La-Quintana P, Garcia-Olmo D, FATT Collaborative Group. Autologous expanded adipose-derived stem cells for the treatment of complex cryptoglandular perianal fistulas: a phase III randomized clinical trial (FATT 1: fistula Advanced Therapy Trial 1) and long-term evaluation. Dis Colon Rectum. 2012;55(7):762–72.

    Article  CAS  PubMed  Google Scholar 

  60. Fang B, Song YP, Liao LM, Han Q, Zhao RC. Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells. Bone Marrow Transplant. 2006;38(5):389–90.

    Article  CAS  PubMed  Google Scholar 

  61. Fang B, Mai L, Li N, Song Y. Favorable response of chronic refractory immune thrombocytopenic purpura to mesenchymal stem cells. Stem Cells Dev. 2012;21(3):497–502.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Matsumoto T, Kano K, Kondo D, Fukuda N, Iribe Y, Tanaka N, Matsubara Y, Sakuma T, Satomi A, Otaki M, Ryu J, Mugishima H. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol. 2008;15(1):210–22.

    Article  Google Scholar 

  63. Fernyhough ME, Hausman GJ, Guan LL, Okine E, Moore SS, Dodson M. Mature adipocytes may be a source of stem cells for tissue engineering. Biochem Biophys Res Commun. 2008;368(3):455–7.

    Article  CAS  PubMed  Google Scholar 

  64. Poloni A, Maurizi G, Leoni P, Serrani F, Mancini S, Frontini A, Zingaretti MC, Siquini W, Sarzani R, Cinti S. Human dedifferentiated adipocytes show similar properties to bone marrow-derived mesenchymal stem cells. Stem Cells. 2012;30(5):965–74.

    Article  CAS  PubMed  Google Scholar 

  65. Kopecky J, Hodny Z, Rossmeisl M, Syrovy I, Kozak LP. Reduction of dietary obesity in aP2-Ucp transgenic mice: physiology and adipose tissue distribution. Am J Physiol. 1996;270(5 Pt 1):E768–75.

    CAS  PubMed  Google Scholar 

  66. Collins S, Daniel KW, Petro AE, Surwit RS. Strain-specific response to beta 3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology. 1997;138(1):405–13.

    CAS  PubMed  Google Scholar 

  67. Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest. 1998;102(2):412–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Almind K, Kahn CR. Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes. 2004;53(12):3274–85.

    Article  CAS  PubMed  Google Scholar 

  69. Lowell BB, Susulic VS, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature. 1993;366(6457):740–2.

    Article  CAS  PubMed  Google Scholar 

  70. Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK, Lowell BB. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science. 2002;297(5582):843–5.

    Article  CAS  PubMed  Google Scholar 

  71. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009;9(2):203–9.

    Article  CAS  PubMed  Google Scholar 

  72. Ghorbani M, Claus TH, Himms-Hagen J. Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3-adrenoceptor agonist. Biochem Pharmacol. 1997;54(1):121–31.

    Article  CAS  PubMed  Google Scholar 

  73. Ghorbani M, Himms-Hagen J. Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int J Obes Relat Metab Disord. 1997;21(6):465–75.

    Article  CAS  PubMed  Google Scholar 

  74. Oberkofler H, Dallinger G, Liu YM, Hell E, Krempler F, Patsch W. Uncoupling protein gene: quantification of expression levels in adipose tissues of obese and non-obese humans. J Lipid Res. 1997;38(10):2125–33.

    CAS  PubMed  Google Scholar 

  75. Cypess AM, Kahn CR. Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes. 2010;17(2):143–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293(2):E444–52.

    Article  CAS  PubMed  Google Scholar 

  77. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360(15):1500–8.

    Article  PubMed  Google Scholar 

  79. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerbäck S, Nuutila P. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15): 1518–25.

    Article  CAS  PubMed  Google Scholar 

  80. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58(7):1526–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D, Joyner AL, Niswander L, Conlon RA. Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol. 2006;296(1):164–76.

    Article  CAS  PubMed  Google Scholar 

  82. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scimè A. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454(7207):961–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 2010;85(10):7153–64.

    Article  Google Scholar 

  84. Cousin B, Bascands-Viguerie N, Kassis N, Nibbelink M, Ambid L, Casteilla L, Pénicaud L. Cellular changes during cold acclimatation in adipose tissues. J Cell Physiol. 1996;167(2):285–9.

    Article  CAS  PubMed  Google Scholar 

  85. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol. 2000;279(3): C670–81.

    CAS  PubMed  Google Scholar 

  86. Granneman JG, Li P, Zhu Z, Lu Y. Metabolic and cellular plasticity in white adipose tissue I: effects of beta3-adrenergic receptor activation. Am J Physiol Endocrinol Metab. 2005;289(4):E608–16.

    Article  CAS  PubMed  Google Scholar 

  87. Cinti S. Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol Endocrinol Metab. 2009;7(5):E977–86.

    Article  Google Scholar 

  88. Tran KV, Gealekman O, Frontini A, Zingaretti MC, Morroni M, Giordano A, Smorlesi A, Perugini J, De Matteis R, Sbarbati A, Corvera S, Cinti S. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab. 2012;15(2): 222–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Gupta RK, Mepani RJ, Kleiner S, Lo JC, Khandekar MJ, Cohen P, Frontini A, Bhowmick DC, Ye L, Cinti S. Spiegelman BM Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab. 2012;15(2):230–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Hovey RC, Trott JF. Morphogenesis of mammary gland development. Adv Exp Med Biol. 2004;554: 219–28.

    Article  CAS  PubMed  Google Scholar 

  91. Smith H, Medina D. Re-evaluation of mammary stem cell biology based on in vivo transplantation. Breast Cancer Res. 2008;10(1):203.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Elias JJ, Pitelka DR, Armstrong RC. Changes in fat cell morphology during lactation in the mouse. Anat Rec. 1973;177(4):533–47.

    Article  CAS  PubMed  Google Scholar 

  93. Morroni M, Giordano A, Zingaretti MC, Boiani R, De Matteis R, Kahn BB, Nisoli E, Tonello C, Pisoschi C, Luchetti MM, Marelli M, Cinti S. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc Natl Acad Sci U S A. 2004;101(48):16801–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. De Matteis R, Zingaretti MC, Murano I, Vitali A, Frontini A, Giannulis I, Barbatelli G, Marcucci F, Bordicchia M, Sarzani R, Raviola E, Cinti S. In vivo physiological transdifferentiation of adult adipose cells. Stem Cells. 2009;27(11):2761–8.

    Article  PubMed  Google Scholar 

  95. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4): 663–76.

    Article  CAS  PubMed  Google Scholar 

  96. Howlett AR, Bissell MJ. The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biol. 1993;2(2):79–89.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saverio Cinti M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smorlesi, A., Frontini, A., Cinti, S. (2014). The Adipose Organ: Morphological Perspectives of Adipose Tissues. In: Shiffman, M., Di Giuseppe, A., Bassetto, F. (eds) Stem Cells in Aesthetic Procedures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45207-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45207-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45206-2

  • Online ISBN: 978-3-642-45207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics