Skip to main content

Virale Infektionen: DNA-Viren

  • Chapter
  • First Online:
Pädiatrie

Zusammenfassung

Adenoviren verursachen im Kindesalter Krankheiten der Atemwege und des Darms, aber auch Krankheiten der Harnwege, der Lymphorgane, kardiologische und neurologische Manifestationen werden beobachtet. Einige typische Krankheitsbilder können klinisch diagnostiziert werden.

Adenovirus-Infektionen werden nur von Mensch zu Mensch übertragen. Sie treten das ganze Jahr über auf, insbesondere mit gastroenteritischen Symptomen. Konjunktivale/pharyngeale Krankheiten kommen häufiger im Sommer, Infektionen der Atemwege häufiger im Winter vor.

Durch diaplazentar übertragene mütterliche neutralisierende Antikörper sind die meisten Kinder bis etwa zum 6. Lebensmonat vor klinisch schweren Manifestationen geschützt. Wenn Neugeborene und junge Säuglinge erkranken, verläuft die Infektion überwiegend sehr schwer. Die meisten Adenovirus-Infektionen treten zwischen dem 6. Lebensmonat und dem 5. Lebensjahr auf. Mit 5 Jahren haben 70–80 % der Kinder neutralisierende Antikörper gegen Typ 1 und 2 sowie 50 % gegen Typ 5.

Insgesamt sind Adenoviren für etwa 25 % der Atemwegsinfektionen und 10–15 % der gastrointestinalen Infektionen im Kindesalter verantwortlich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

100.1 Adenovirus-Infektionen

  • Lenaerts L, De Clercq E, Naesens L (2008) Clinical features and treatment of adenovirus infections. Rev Med Virol 18:357–374

    Article  CAS  PubMed  Google Scholar 

  • Sivaprakasam P, Carr TF, Coussons M et al (2007) Improved outcome from invasive adenovirus infection in pediatric patients after hemopoietic stem cell transplantation using intensive clinical surveillance and early intervention. J Pediatr Hematol Oncol 29:81–85

    Article  PubMed  Google Scholar 

  • Weigl JA, Puppe W, Meyer CU et al (2007) Ten years’ experience with year-round active surveillance of up to 19 respiratory pathogens in children. Eur J Pediatr 166:957–966

    Article  PubMed  Google Scholar 

100.2 Epstein-Barr-Virus-Infektionen

  • Clave E, Agbalika F, Bajzik V et al. (2004) Epstein-Barr virus (EBV) reactivation in allogeneic stem-cell transplantation: relationship between viral load, EBV-specific T-cell reconstitution and rituximab therapy. Transplantation 77: 76–84

    Google Scholar 

  • Gruhn B, Meerbach A, Hafer R et al (2003) Pre-emptive therapy with rituximab for prevention of Epstein-Barr virus-associated lymphoproliferative disease after hematopoietic stem cell transplantation. Bone Marrow Transplant 31:1023–1025

    Article  CAS  PubMed  Google Scholar 

  • Heslop HE, Slobod KS, Pule MA et al (2010) Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115(5):925–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hislop AD et al (2007) Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 25:587–617

    Article  CAS  PubMed  Google Scholar 

  • Imashuku S, Hibi S, Ohara T et al (1999) Effective control of Epstein-Barr virus related hemophagocytic lymphohistiocytosis with immunochemotherapy. Histiocyte Society. Blood 93:1869–1874

    CAS  PubMed  Google Scholar 

  • Jenson HB (2000) Acute complications of Epstein-Barr virus infectious mononucleosis. Curr Opin Pediatr 12:263–268

    Article  CAS  PubMed  Google Scholar 

  • Milone MC, Tsai DE, Hodinka RL et al. (2005) Treatment of primary Epstein-Barr virus infection in patients with X-linked lymphoproliferative disease using B-cell-directed therapy. Blood 105: 994–996

    Google Scholar 

  • Schuster V, Hügle B, Tefs K, Borte M (2002) Atypische Epstein-Barr-Virus (EBV)-Infektionen im Kindes- und Jugendalter. Monatsschr Kinderheilkd 150:1154–1167

    Article  Google Scholar 

100.3 Zytomegalievirus-Infektionen

  • Boppana SB, Pass RF, Britt WJ et al (1992) Symptomatic congenital cytomegalovirus infection: neonatal morbidity and mortality. Pediatr Infect Dis J 11:93–99

    Article  CAS  PubMed  Google Scholar 

  • Fowler KB, Stagno S, Pass RF et al (1992) The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 326:663–667

    Article  CAS  PubMed  Google Scholar 

  • Frenkel LM, Capparelli EV, Dankner WM et al (2000) Oral ganciclovir in children: pharmacokinetics, safety, tolerance, and antiviral effects. The Pediatric AIDS Clinical Trials Group. J Infect Dis 182:1616–1624

    Article  CAS  PubMed  Google Scholar 

  • Hamprecht K, Maschmann J, Muller D et al. (2004) Cytomegalovirus (CMV) inactivation in breast milk: reassessment of pasteurization and freeze-thawing. Pediatr Res 56: 529–535

    Google Scholar 

  • Hilgendorff A, Daiminger A, Dangel V et al (2009) Oral Valganciclovir treatment in a CMV congenital infected infant with sensorineural hearing loss (SNHL) first detected at 4 months of age. Klin Padiatr 221(7):448–449

    Article  CAS  PubMed  Google Scholar 

  • Kimberlin DW, Lin CY, Sanchez PJ et al. (2003) Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: a randomized, controlled trial. J Pediatr 143: 16–25

    Google Scholar 

  • Meijer E, Boland GJ, Verdonck LF (2003) Prevention of cytomegalovirus disease in recipients of allogeneic stem cell transplants. Clin Microbiol Rev 16: 647–657

    Google Scholar 

  • Nigro G et al (2005) Passive immunization during pregnancy for congenital cytomegalovirus infection. N Engl J Med 353(13):1350–62

    Article  CAS  PubMed  Google Scholar 

  • Vollmer B, Seibold-Weiger K, Schmitz-Salue C et al (2004) Postnatally acquired cytomegalovirus infection via breast milk: effects on hearing and development in preterm infants. Pediatr Infect Dis J 23: 322–327

    Google Scholar 

100.4 Varicella-Zoster-Virus-Infektionen

  • Enders G, Miller E, Cradock-Watson J et al (1994) Consequences of varicella and herpes zoster in pregnancy: prospective study of 1739 cases. Lancet 343:1548–1551

    Article  CAS  PubMed  Google Scholar 

  • Gilden D (2004) Varicella zoster virus and central nervous system syndromes. Herpes 11(2):89A–94A

    PubMed  Google Scholar 

  • Leung TF, Chik KW, Li CK et al. (2000) Incidence, risk factors and outcome of varicella-zoster virus infection in children after haematopoietic stem cell transplantation. Bone Marrow Transplant 25: 167–172

    Google Scholar 

  • Lin TY et al (1997) Oral acyclovir prophylaxis of varicella after intimate contact. Pediatr Infect Dis J 16:1162–1165

    Article  CAS  PubMed  Google Scholar 

  • Ozaki T, Kajita Y, Asano Y et al (1994) Detection of varicella-zoster virus DNA in blood of children with varicella. J Med Virol 44:263–265

    Article  CAS  PubMed  Google Scholar 

  • Spackova M, Muehlen M, Siedler A (2010) Complications of varicella after implementation of routine childhood varicella vaccination in Germany. Pediatr Infect Dis J 29(9):884–886

    Article  PubMed  Google Scholar 

  • Wutzler P, Farber I, Wagenpfeil S et al. (2001) Seroprevalence of varicella-zoster virus in the German population. Vaccine 20: 121–124

    Google Scholar 

100.5 Herpes-simplex-Virus-Infektionen

  • Hollier LM, Wendel GD (2008) Third trimester antiviral prophylaxis for preventing maternal genital herpes simplex virus (HSV) recurrences and neonatal infection. Cochrane Database Syst Rev 1:CD004946

    PubMed  Google Scholar 

  • Kimberlin DW et al (2011) Oral acyclovir suppression and neurodevelopment after neonatal herpes. N Engl J Med 365(14):1284–1292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura H, Aso K, Kuzushima K et al (1992) Relapse of herpes simplex encephalitis in children. Pediatrics 89:891–894

    CAS  PubMed  Google Scholar 

  • Sancho-Shimizu V, Pérez de Diego R et al (2011) Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest 121(12):4889–4902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schuster V et al (2007) Herpes-simplex-Virus-Infektionen. In: Scholz H, Belohradsky BH, Heininger U et al (Hrsg) DGPI-Handbuch Infektionen bei Kindern und Jugendlichen, 5. Aufl. Thieme-Verlag, Stuttgart, S 286–291

    Google Scholar 

  • Wagstaff AJ, Faulds D, Goa KL (1994) Aciclovir. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs 47:153–205

    Article  CAS  PubMed  Google Scholar 

100.6 Herpesvirus-Typ-6-Infektionen

  • Agut H (2011) Deciphering the clinical impact of acute human herpesvirus 6 (HHV-6) infections. J Clin Virol 52(3):164–171 (Epub 2011 Jul 22. Review)

    Article  PubMed  Google Scholar 

  • Asano Y, Yoshikawa T, Suga S et al (1994) Clinical features of infants with primary human herpesvirus 6 infection (exanthem subitum, roseola infantum). Pediatrics 93:104–108

    CAS  PubMed  Google Scholar 

  • Caserta MT, McDermott MP, Dewhurst S et al. (2004) Human herpesvirus 6 (HHV6) DNA persistence and reactivation in healthy children. J Pediatr 145: 478–484

    Google Scholar 

  • Hall CB, Caserta MT, Schnabel KC et al (2004).Congenital infections with human herpesvirus 6 (HHV6) and human herpesvirus 7 (HHV7).J Pediatr 145: 472–477

    Google Scholar 

  • Suga S, Suzuki K, Ihira M et al (2000) Clinical characteristics of febrile convulsions during primary HHV-6 infection. Arch Dis Child 82:62–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tokimasa S, Hara J, Osugi Y et al. (2002) Ganciclovir is effective for prophylaxis and treatment of human herpesvirus-6 in allogeneic stem cell transplantation. Bone Marrow Transplant 29: 595–598

    Google Scholar 

  • Ward KN, Andrews NJ, Verity CM et al. (2005) Human herpesviruses-6 and -7 each cause significant neurological morbidity in Britain and Ireland. Arch Dis Child 90: 619–623

    Google Scholar 

  • Yoshihara S, Kato R, Inoue T et al. (2004) Successful treatment of life-threatening human herpesvirus-6 encephalitis with donor lymphocyte infusion in a patient who had undergone human leukocyte antigen-haploidentical nonmyeloablative stem cell transplantation. Transplantation 77: 835–838

    Google Scholar 

  • Zerr DM, Meier AS, Selke SS et al. (2005) A population-based study of primary human herpesvirus 6 infection. N Engl J Med 352: 768–776

    Google Scholar 

100.7 Herpesvirus-Typ-7-Infektionen

  • Boutolleau D, Fernandez C, Andre E et al. (2003) Human herpesvirus (HHV)-6 and HHV-7: two closely related viruses with different infection profiles in stem cell transplantation recipients. J Infect Dis 187: 179–186

    Google Scholar 

  • Caserta MT, Hall CB, Schnabel K et al (1998) Primary human herpesvirus 7 infection: a comparisation of human herpesvirus 7 and human herpesvirus 6 infections in children. J Pediatr 133:386–389

    Article  CAS  PubMed  Google Scholar 

  • Chan PK, Li CK, Chik KW et al. (2004) Risk factors and clinical consequences of human herpesvirus 7 infection in paediatric haematopoietic stem cell transplant recipients. J Med Virol 72: 668–674

    Google Scholar 

  • Levy JA (1997) Three new human herpesviruses (HHV6, 7, and 8). Lancet 349:558–563

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Yamada M, Nakamura J et al (1997) Transmission of human herpesvirus 7 through multigenerational families in the same household. Pediatr Infect Dis J 16:975–978

    Article  CAS  PubMed  Google Scholar 

  • Torigoe S, Kumamoto T, Koide W et al (1995) Clinical manifestations associated with human herpesvirus 7 infection. Arch Dis Child 72:518–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

100.8 Herpesvirus-Typ-8-Infektionen

  • Bhaduri-McIntosh S (2005) Human herpesvirus-8: clinical features of an emerging viral pathogen. Pediatr Infect Dis J 24: 81–82

    Google Scholar 

  • Byun M, Abhyankar A, Lelarge V et al (2010) Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J Exp Med 207(11):2307–2312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Camcioglu Y, Picard C, Lacoste V et al. (2004) HHV-8-associated Kaposi sarcoma in a child with IFNgammaR1 deficiency. J Pediatr 144: 519–523

    Google Scholar 

  • Chen RL, Lin JC, Wang PJ et al. (2004) Human herpesvirus 8-related childhood mononucleosis: a series of three cases. Pediatr Infect Dis J 23: 671–674

    Google Scholar 

  • Plancoulaine S, Abel L, van Beveren M et al (2000) Human herpesvirus 8 transmission from mother to child and between siblings in an endemic population. Lancet 356:1062–1065

    Article  CAS  PubMed  Google Scholar 

  • Wheat WH, Cool CD, Morimoto Y et al. (2005) Possible role of human herpesvirus 8 in the lymphoproliferative disorders in common variable immunodeficiency. J Exp Med 202: 479–484

    Google Scholar 

100.9 Parovirus-B19-Infektionen

  • Anderson MJ, Higgins PG, David LR et al (1985) Experimental parvoviral infection in humans. J Infect Dis 152:257–265

    Article  CAS  PubMed  Google Scholar 

  • Brown KE, Hibbs JR, Gallinella G et al (1994) Resistance to parvovirus B19 infection due to lack of virus receptor (erythrocyte P antigen). N Engl J Med 330:1192–1196

    Article  CAS  PubMed  Google Scholar 

  • Fretzayas A et al (2009) Papular-purpuric gloves and socks syndrome in children and adolescents. Pediatr Infect Dis J 28(3):250–252

    Article  PubMed  Google Scholar 

  • Heegaard ED, Hornsleth A (1995) Parvovirus: the expanding spectrum of disease. Acta Paediatr 84:109–117

    Article  CAS  PubMed  Google Scholar 

  • Lackner H, Sovinz P, Benesch M et al (2011) The spectrum of parvovirus B19 infection in a pediatric hemato-oncologic ward. Pediatr Infect Dis J 30(5):440–442

    Article  PubMed  Google Scholar 

  • Lehmann HW, Landenberg P von, Modrow S (2003) Parvovirus B19 infection and autoimmune disease. Autoimmun Rev 2: 218–223

    Google Scholar 

  • Levy R et al (1997) Infection by parvovirus B19 during pregnancy: a review. Obstet Gynecol Surv 52:254–259

    Article  CAS  PubMed  Google Scholar 

  • Servant A, Laperche S, Lallemand F et al. (2002) Genetic diversity within human erythroviruses: identification of three genotypes. J Virol 76: 9124–9134

    Google Scholar 

  • Young NS, Brown KE (2004) Parvovirus B19. N Engl J Med 350: 586–597

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Forster, J., Schuster, V., Kreth, H.W. (2014). Virale Infektionen: DNA-Viren. In: Hoffmann, G., Lentze, M., Spranger, J., Zepp, F. (eds) Pädiatrie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41866-2_100

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41866-2_100

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41865-5

  • Online ISBN: 978-3-642-41866-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics