Skip to main content

Coalescence Conditions of Relativistic Wave Functions

  • Living reference work entry
  • First Online:
Handbook of Relativistic Quantum Chemistry

Abstract

The electron-electron coalescence conditions for the wave functions of the Dirac-Coulomb (DC), Dirac-Coulomb-Gaunt (DCG), and Dirac-Coulomb-Breit (DCB) Hamiltonians are analyzed by making use of the internal symmetries of the reduced two-electron systems. The results show that, at the coalescence point of two electrons, the wave functions of the DCG Hamiltonian are regular, while those of the DC and DCB Hamiltonians have r 12 ν-type weak singularities, with ν being negative and of \(\mathcal{O}(\alpha ^{2})\). Yet, such asymptotic expansions of the relativistic wave functions are only valid within an extremely small convergence radius R c of \(\mathcal{O}(\alpha ^{2})\). Beyond this radius, the behaviors of the relativistic wave functions are still dominated by the nonrelativistic limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hylleraas EA (1929) Neue berechnung der energie des Heliums im grundzustande, sowie des tiefsten terms von ortho-Helium. Z Phys 54:347

    Article  CAS  Google Scholar 

  2. Kato T (1957) On the eigenfunctions of many-particle systems in quantum mechanics. Commun Pure Appl Math 10:151

    Article  Google Scholar 

  3. Pack RT, Brown WB (1966) Cusp conditions for molecular wavefunctions. J Chem Phys 45:556

    Article  CAS  Google Scholar 

  4. Tew DP (2008) Second order coalescence conditions of molecular wave functions. J Chem Phys 129:014104

    Article  Google Scholar 

  5. Klopper W, Manby FR, Ten-no S, Valeev EF (2006) R12 methods in explicitly correlated molecular electronic structure theory. Int Rev Phys Chem 25:427

    Article  CAS  Google Scholar 

  6. Shiozaki T, Valeev EF, Hirata S (2009) Explicitly correlated coupled-cluster methods. Annu Rev Comput Chem 5:131

    CAS  Google Scholar 

  7. Hättig C, Klopper W, Köhn A, Tew DP (2012) Explicitly correlated electrons in molecules. Chem Rev 112:4

    Article  Google Scholar 

  8. Kong L, Bischoff FA, Valeev EF (2012) Explicitly correlated R12/F12 methods for electronic structure. Chem Rev 112:75

    Article  CAS  Google Scholar 

  9. Ten-no S (2012) Explicitly correlated wave functions: Summary and perspective. Theor Chem Acc 131:1070

    Article  Google Scholar 

  10. Kutzelnigg W (1985) r 12-dependent terms in the wave function as closed sums of partial wave amplitudes for large l. Theor Chim Acta 68:445

    Article  CAS  Google Scholar 

  11. Valeev EF (2004) Improving on the resolution of the identity in linear R12 ab initio theories. Chem Phys Lett 395:190

    Article  CAS  Google Scholar 

  12. Kutzelnigg W, Klopper W (1991) Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. general theory. J Chem Phys 94:1985

    Google Scholar 

  13. Ten-no S (2004) Initiation of explicitly correlated Slater-type geminal theory. Chem Phys Lett 398:56

    Article  CAS  Google Scholar 

  14. Salomonson S, Öster P (1989) Relativistic all-order pair functions from a discretized single-particle Dirac Hamiltonian. Phys Rev A 40:5548

    Article  CAS  Google Scholar 

  15. Ottschofski E, Kutzelnigg W (1997) Direct perturbation theory of relativistic effects for explicitly correlated wave functions: the He isoelectronic series. J Chem Phys 106:6634

    Article  CAS  Google Scholar 

  16. Halkier A, Helgaker T, Klopper W, Olsen J (2000) Basis-set convergence of the two-electron Darwin term. Chem Phys Lett 319:287

    Article  CAS  Google Scholar 

  17. Kutzelnigg W (1989) Generalization of Kato’s cusp conditions to the relativistic case. In: Mukherjee D (ed) Aspects of many-body effects in molecules and extended systems. Springer, Berlin, p 353

    Chapter  Google Scholar 

  18. Li Z, Shao S, Liu WJ (2012) Relativistic explicit correlation: coalescence conditions and practical suggestions. Chem Phys 136:144117

    Google Scholar 

  19. Bethe HA, Salpheter EE (1977) Quantum mechanics of one- and two-electron atoms. Plenum Publishing, New York

    Book  Google Scholar 

  20. Shao S, Li Z, Liu W, Basic structures of relativistic wave functions. In: Liu W (ed) Handbook of relativistic quantum chemistry. Springer

    Google Scholar 

  21. Tracy DS, Singh RP (1972) A new matrix product and its applications in partitioned matrix differentiation. Stat Neerl 26:143

    Article  Google Scholar 

  22. Liu S (1999) Matrix results on the Khatri-Rao and Tracy-Singh products. Linear Algebra Appl 289:267

    Article  Google Scholar 

  23. Edmonds AR (1957) Angular momentum in quantum mechanics. Princeton University Press, Princeton

    Google Scholar 

  24. Kutzelnigg W (2008) Relativistic corrections to the partial wave expansion of two-electron atoms. Int J Quantum Chem 108:2280

    Article  CAS  Google Scholar 

  25. Kutzelnigg W (2002) Perturbation theory of relativistic effects. In: Schwerdtfeger P (ed) Relativistic electronic structure theory. Part 1. Fundamentals. Elsevier, Amsterdam, p 664

    Google Scholar 

  26. Gesztesy F, Grosse H, Thaller B (1984) Relativistic corrections to bound-state energies for two-fermion systems. Phys Rev D 30:2189

    Article  CAS  Google Scholar 

  27. Brown RE, Ravenhall DG (1951) On the interaction of two electrons. Proc R Soc A 208:552

    Article  CAS  Google Scholar 

  28. Pestka G, Bylicki M, Karwowski J (2006) Application of the complex-coordinate rotation to the relativistic Hylleraas-CI method: a case study. J Phys B At Mol Opt Phys 39:2979

    Article  CAS  Google Scholar 

  29. Sucher J (1985) Continuum dissolution and the relativistic many-body problem: a solvable model. Phys Rev Lett 55:1033

    Article  CAS  Google Scholar 

  30. Liu W (2012) Perspectives of relativistic quantum chemistry: the negative energy cat smiles. Phys Chem Chem Phys 14:35

    Article  Google Scholar 

  31. Liu W, Lindgren I (2013) Going beyond “no-pair relativistic quantum chemistry”. J Chem Phys 139:014108

    Article  Google Scholar 

  32. Liu W (2014) Advances in relativistic molecular quantum mechanics. Phys Rep 537:59

    Article  Google Scholar 

Download references

Acknowledgements

The research of this work was supported by grants from the National Natural Science Foundation of China (Project Nos. 21033001, 21273011, 21290192, and 11471025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihong Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Shao, S., Li, Z., Liu, W. (2015). Coalescence Conditions of Relativistic Wave Functions. In: Liu, W. (eds) Handbook of Relativistic Quantum Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41611-8_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41611-8_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-41611-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics