Skip to main content

The Role of Flow and the Lateral Line in the Multisensory Guidance of Orienting Behaviors

  • Chapter
  • First Online:
Flow Sensing in Air and Water

Abstract

This chapter summarizes what is known about the role of lateral line flow sensors in different types of fish orienting behaviors and the spatiotemporal characteristics of flow patterns that guide fish. Where possible, fundamental and shared principles of flow guidance are identified for behaviors as diverse as rheotaxis, prey orientation, and predator avoidance. Multisensory, egocentric direction maps in the midbrain optic tectum are thought to underlie oriented movements toward discrete targets of interest (e.g., prey), whereas differential biasing of bilaterally paired Mauthner cells by multisensory inputs are involved in fast-start oriented behaviors such as predator avoidance. Wide-field integration of global flow fields inspired by optic flow studies in flies is suggested as a central mechanism by which cells are tuned to expected flow patterns over large body regions during common motion states, such as forward translational movement. Disruptions in those patterns caused by, e.g., the destabilizing influences of currents could then be used as part of closed-loop feedback control for corrective actions. Flow guidance of behaviors is likely to be best understood when viewed from a multisensory, evolutionary perspective in which nonvisual and visual systems work in tandem to guide behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Latif H, Hassan E, Campenhausen C (1990) Sensory performance of blind Mexican cave fish after destruction of the canal neuromasts. Naturwissenschaften 77:237–239

    Article  CAS  PubMed  Google Scholar 

  • Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, Engert F, Portugues R (2012) Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485:471–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Akel AS, Guthrie DM, Banks JR (1986) Motor responses to localized electrical stimulation of the optic tectum in the freshwater perch (Perca fluviatilis). Neuroscience 19:1381–1391

    Article  CAS  PubMed  Google Scholar 

  • Arnold GP (1974) Rheotropism in fishes. Biol Rev Cam Phil Soc 49:515–576

    Article  CAS  Google Scholar 

  • Ayali A, Gelman S, Tytell E, Cohen A (2009) Lateral-line activity during undulatory body motions suggests a feedback link in closed-loop control of sea lamprey swimming. Can J Zool 87:671–683

    Article  Google Scholar 

  • Bak-Coleman J, Court A, Paley DA, Coombs S (2013) The spatiotemporal dynamics of rheotactic behavior depends on flow speed and available sensory information. J Exp Biol 216:4011–4024

    Article  PubMed  Google Scholar 

  • Baker CF, Montgomery JC (1999a) Lateral line mediated rheotaxis in the Antarctic fish Pagothenia borchgrevinki. Polar Biol 21:305–309

    Article  Google Scholar 

  • Baker CF, Montgomery JC (1999b) The sensory basis of rheotaxis in the blind Mexican cavefish, Asytanax fasciatus. J Comp Physiol A 184:519–527

    Article  Google Scholar 

  • Baker CF, Montgomery JC, Dennis TE (2002) The sensory basis of olfactory search behavior in banded kokopu (Galaxias fasciatus). J Comp Physiol A 188:560

    Article  Google Scholar 

  • Blaxter J, Fuiman L (1990) The role of the sensory systems of herring larvae in evading predatory fishes. J Mar Biol Assoc UK 70:413–427

    Article  Google Scholar 

  • Bleckmann H (1993) Role of the lateral line in fish behaviour. In: Pitcher TJ (ed) Behavior of teleost fishes, 2nd edn. Chapman & Hall, New York, pp 201–246

    Chapter  Google Scholar 

  • Bleckmann H, Mogdans J (2013) Central processing of lateral line information. In: Coombs S, Bleckmann H (eds) The Lateral Line System. Springer, New York, pp 253–280

    Google Scholar 

  • Bleckmann H, Tittel G, Blübaum-Gronau E (1989) Lateral line system of surface-feeding fish: anatomy, physiology and behavior. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York; Berlin, pp 501–526

    Chapter  Google Scholar 

  • Bleckmann H, Przybilla A, Klein A, Schmitz A, Kunze S, Brücker C (2012) Station holding of trout: behavior, physiology and hydrodynamics. In: Tropea C, Bleckmann H (eds) Nature-inspired fluid mechanics. Springer, New York, pp 161–177

    Chapter  Google Scholar 

  • Canfield JG, Eaton RC (1990) Swimbladder acoustic pressure transduction initiates Mauthner-mediated escape. Nature 347:760–762

    Article  Google Scholar 

  • Canfield JG, Rose GJ (1993) Activation of Mauthner neurons during prey capture. J Comp Physiol A 172:611–618

    Article  Google Scholar 

  • Canfield JG, Rose GJ (1996) Hierarchical sensory guidance of Mauthner-mediated escape responses in goldfish (Carassius auratus) and cichlids (Haplochromis burtoni). Brain Behav Evol 48:137–156

    Google Scholar 

  • Carr C, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10:3227

    CAS  PubMed  Google Scholar 

  • Casagrand JL, Guzik AL, Eaton RC (1999) Mauthner and reticulospinal responses to the onset of acoustic pressure and acceleration stimuli. J Neurophysiol 82:1422–1437

    CAS  PubMed  Google Scholar 

  • Chagnaud BP, Coombs S (2013) Information encoding and processing by the peripheral lateral line system. In: Coombs S, Bleckmann H, Popper AN, Fay RR (eds) The lateral line, springer handbook of auditory research, vol 48. Springer, New York

    Google Scholar 

  • Claas B, Münz H, Zittlau KE (1989) Direction coding in central parts of the lateral line system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York; Berlin, pp 409–419

    Chapter  Google Scholar 

  • Collin SP, Shand J, Collin S, Marshall J (2003) Retinal sampling and the visual field in fishes. Sens Process Aquat Environ 139–169

    Google Scholar 

  • Coombs S, Braun CB, Donovan B (2001) The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204:337–348

    Google Scholar 

  • Coombs S, Patton P (2009) Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi). J Comp Pysiol A 195:279–297

    Google Scholar 

  • Conley RA, Coombs S (1998) Dipole source localization by mottled sculpin. III. Orientation after site-specific, unilateral blockage of the lateral line system. J Comp Physiol A 183:335–344

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Conley RA (1997a) Dipole source localization by mottled sculpin. I. Approach strategies. J. Comp. Physiol 180:387–399

    Article  CAS  Google Scholar 

  • Coombs S, Conley RA (1997b) Dipole source localization by mottled sculpin. II. The role of lateral line excitation patterns. J Comp Physiol 180:401–415

    Article  CAS  Google Scholar 

  • Coombs S, Hastings MC, Finneran JJ (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol 178:359–371

    Article  CAS  Google Scholar 

  • Ćurčić-Blake B, van Netten SM (2006) Source location encoding in the fish lateral line canal. J Exp Biol 209:1548–1559

    Article  PubMed  Google Scholar 

  • Day SW, Higham TE, Cheer AY, Wainwright PC (2005) Spatial and temporal patterns of water flow generated by suction-feeding bluegill sunfish Lepomis macrochirus resolved by particle image velocimetry. J Exp Biol 208:2661–2671

    Article  PubMed  Google Scholar 

  • Domenici P, Blake RW (1991) The kinematics and performance of the escape response in the angelfish (Pterophyllum eimekei). J Exp Biol 156:187–205

    Google Scholar 

  • Domenici P, Blake R (1997) The kinematics and performance of fish fast-start swimming. J Exp Biol 200:1165–1178

    PubMed  Google Scholar 

  • Drucker EG, Lauder GV (2002) Experimental hydrodynamics of fish locomotion: Functional insights from wake visualization. Integr Comp Biol 42:243–257

    Article  PubMed  Google Scholar 

  • Eaton RC, Bombardieri RA, Meyer DL (1977) The mauthner-initiated startle response in teleost fish. J Exp Biol 66:65–81

    Google Scholar 

  • Eaton RC, Emberley DS (1991) How stimulus direction determines the trajectory of the Mauthner-initiated escape response in a teleost fish. J Exp Biol 161:469–487

    CAS  PubMed  Google Scholar 

  • Eaton RC, DiDomenico R, Nissanov J (1988) Flexible body dynamics of the goldfish C-start: implications for reticulospinal command mechanisms. J Neurosci 8:2758–2768

    CAS  PubMed  Google Scholar 

  • Eaton R, Lee R, Foreman M (2001) The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog Neurobiol 63:467–485

    Article  CAS  PubMed  Google Scholar 

  • Engelmann J, Bleckmann H (2004) Coding of lateral line stimuli in the goldfish midbrain in still and running water. Zoology (Jena) 107:135–151

    Article  Google Scholar 

  • Enger PS, Kalmijn AJ, Sand O (1989) Behavioral investigations on the functions of the lateral line and inner ear in predation. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York; Berlin, pp 575–587

    Chapter  Google Scholar 

  • Ranganathan BN, Dimble KD, Faddy, JM, Humbert JS (2013) Underwater navigation behaviors using wide-field Integration methods. In: IEEE international conference on robotics and automation, Karlsruhe Germany, pp 4132–4137

    Google Scholar 

  • Faucher K, Parmentier E, Becco C, Vandewalle N, Vandewalle P (2010) Fish lateral system is required for accurate control of shoaling behaviour. Anim Behav 79:679–687

    Article  Google Scholar 

  • Fay RR, Edds-Walton PL (2001) Bimodal units in the torus semicircularis of the toadfish (Opsanus tau). Biol Bull 201:280–281

    Article  CAS  PubMed  Google Scholar 

  • Fay RR, Popper AN (1974) Acoustic stimulation of the ear of the goldfish (Carassius auratus). J Exp Biol 61:243–260

    CAS  PubMed  Google Scholar 

  • Flock Å (1965) Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngol 199:1–90

    Google Scholar 

  • Fraenkel GS, Gunn DL (1961) The orientation of animals. Kineses, taxes and compass reactions. Oxford University Press, Oxford and New York, p 352

    Google Scholar 

  • Franosch JMP, Hagedorn HJA, Goulet J, Engelmann J, van Hemmen JL (2009) Wake tracking and the detection of vortex rings by the canal lateral line of fish. Phys Rev Lett 103:78102

    Article  CAS  Google Scholar 

  • Franz MO, Krapp HG (2000) Wide-field, motion-sensitive neurons and matched filters for optic flow fields. Biol Cybern 83:185–197

    Article  CAS  PubMed  Google Scholar 

  • Gahtan E, Tanger P, Baier H (2005) Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J Neurosci 25:9294–9303

    Article  CAS  PubMed  Google Scholar 

  • Gandhi NJ, Katnani HA (2011) Motor functions of the superior colliculus. Annu Rev Neurosci 34:205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gardiner JM (2012) Multisensory integration in shark feeding behavior

    Google Scholar 

  • Gardiner JM, Atema J (2007) Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. J Exp Biol 210:1925–1934

    Article  PubMed  Google Scholar 

  • Gardiner JM, Motta PJ (2012) Largemouth bass (Micropterus salmoides) switch feeding modalities in response to sensory deprivation. Zoology 115:78–83

    Google Scholar 

  • Godin JGJ, Morgan MJ (1985) Predator avoidance and school size in a cyprinodontid fish, the banded killifish (Fundulus diaphanus Lesueur). Behav Ecol Sociobiol 16:105–110

    Article  Google Scholar 

  • Goulet J, Engelmann J, Chagnaud B, Franosch JP, Suttner MD, van Hemmen JL (2008) Object localization through the lateral line system of fish: theory and experiment. J Comp Physiol A 194:1–17

    Article  Google Scholar 

  • Gray JAB, Denton EJ (1991) Fast pressure pulses and communication between fish. J Mar Biol Assoc U K 71:63–106

    Google Scholar 

  • Hale ME, Long JH Jr, McHenry MJ, Westneat MW (2002) Evolution of behavior and neural control of the fast-start escape response. Evolution 56:993–1007

    PubMed  Google Scholar 

  • Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. J Exp Biol 207:1585–1596

    Article  PubMed  Google Scholar 

  • Hanke W, Brucker C, Bleckmann H (2000) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–1200

    CAS  PubMed  Google Scholar 

  • Hassan E (1985) Mathematical analysis of the stimulus for the lateral line organ. Biol Cybern 52:23–36

    Article  CAS  PubMed  Google Scholar 

  • Hassan E (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York; Berlin, pp 217–227

    Chapter  Google Scholar 

  • Herrero L, Rodriguez F, Salas C, Torres B (1998) Tail and eye movements evoked by electrical microstimulation of the optic tectum in goldfish. Exp Brain Res 120:291–305

    Article  CAS  PubMed  Google Scholar 

  • Higham TE, Day SW, Wainwright PC (2005) Sucking while swimming: evaluating the effects of ram speed on suction generation in bluegill sunfish Lepomis macrochirus using digital particle image velocimetry. J Exp Biol 208:2653–2660

    Article  PubMed  Google Scholar 

  • Highstein SM, Baker R (1986) Organization of the efferent vestibular nuclei and nerves of the toadfish, Opsanus tau. J Comp Neurol 243:309–325

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra D, Janssen J (1985) Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Envir Biol Fish 12:111–117

    Article  Google Scholar 

  • Hoekstra D, Janssen J (1986) Lateral line receptivity in the mottled sculpin (Cottus bairdi). Copeia 1986:91–96

    Article  Google Scholar 

  • Humbert JS, Conroy JK, Neely CW, Barrows G (2009) Wide-field integration methods for visuomotor control. Flying Insects Robots 63–71

    Google Scholar 

  • Huston SJ, Krapp HG (2008) Visuomotor transformation in the fly gaze stabilization system. PLoS Biol 6:e173

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hyslop AM, Humbert JS (2010) Autonomous navigation in three-dimensional urban environments using wide-field integration of optic flow. J Guidance, Control, Dyn 33:147–159

    Article  Google Scholar 

  • Jander R (1975) Ecological aspects of spatial orientation. Ann Rev Ecol Syst 6:171–188

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130

    Chapter  Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner-ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York; Berlin, pp 187–215

    Chapter  Google Scholar 

  • Köppl C (2011) Evolution of the octavolateral efferent system. In: Ryugo D, Fay RR and Popper AN (eds) Auditory and vestibular efferents, vol 38. The springer handbook of auditory research. Springer, New York, pp 217-259

    Google Scholar 

  • Korn H, Faber DS (2005) The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47:13–28

    Article  CAS  PubMed  Google Scholar 

  • Krapp HG, Hengstenberg R (1996) Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384:463–466

    Article  CAS  PubMed  Google Scholar 

  • Krapp HG, Hengstenberg B, Hengstenberg R (1998) Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J Neurophysiol 79:1902–1917

    CAS  PubMed  Google Scholar 

  • JC (2006) The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. J Exp Biol 209:4077–4090

    Article  PubMed  Google Scholar 

  • Liao JC (2007) A review of fish swimming mechanics and behaviour in altered flows. Philos Trans R Soc Lond B 362:1973

    Article  Google Scholar 

  • Liao JC (2010) Organization and physiology of posterior lateral line afferent neurons in larval zebrafish. Biol Lett 6:402–405

    Article  PubMed Central  PubMed  Google Scholar 

  • Liao JC, Haehnel M (2012) Physiology of afferent neurons in larval zebrafish provides a functional framework for lateral line somatotopy. J Neurophysiol 107:2615–2623

    Article  PubMed  Google Scholar 

  • Liao JC, Beal DN, Lauder GV, Triantafyllou GS (2003) The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206:1059–1073

    Article  PubMed  Google Scholar 

  • Lyon EP (1904) On rheotropism. I. Rheotropism in fishes. Am J Physiol 149–161

    Google Scholar 

  • Malkiel E, Sheng J, Katz J, Strickler JR (2003) The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography. J Exp Biol 206:3657–3666

    Article  PubMed  Google Scholar 

  • McCormick CA (1989) Central lateral line mechanosensory pathways in bony fish. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York; Berlin, pp 341–364

    Chapter  Google Scholar 

  • McHenry M, Feitl K, Strother J, Van Trump W (2009) Larval zebrafish rapidly sense the water flow of a predator’s strike. Biol Lett 5:477–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meek HJ (1990) Tectal morphology: connections, neurones and synapses. In: Anonymous The visual system of fish. Springer, New York, pp 239–277

    Google Scholar 

  • Meyer G, Klein A, Mogdans J, Bleckmann H (2012) Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere. J Comp Physiol A 198:639–653

    Article  Google Scholar 

  • Mirjany M, Preuss T, Faber DS (2011) Role of the lateral line mechanosensory system in directionality of goldfish auditory evoked escape response. J Exp Biol 214:3358–3367

    Article  PubMed  Google Scholar 

  • Moiseff A, Konishi M (1981) The owl’s interaural pathway is not involved in sound localization. J Comp Physiol 144:299–304

    Article  Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963

    Article  CAS  Google Scholar 

  • Montgomery JC, McDonald F, Baker CF, Carton AG, Ling N (2003) Sensory integration in the hydrodynamic world of rainbow trout. Proc R Soc Lond B 270:S195

    Google Scholar 

  • Montgomery JC, Walker MM (2001) Orientation and navigation in elasmobranchs: which way forward? Environ Biol Fishes 60:109–116

    Google Scholar 

  • Moore PA, Atema J (1991) Spatial information in the three-dimensional fine structure of an aquatic odor plume. Biol Bull 181:408–418

    Article  Google Scholar 

  • New JG, Fewkes LA, Khan AN (2001) Strike feeding behavior in the muskellunge, Esox masquinongy: contributions of the lateral line and visual sensory systems. J Exp Biol 204:1207–1221

    CAS  PubMed  Google Scholar 

  • Nissanov JN, Eaton RC (1989) Reticulospinal control of rapid escape turning maneuvers in fishes. Am Zool 29:103–121

    Google Scholar 

  • Olszewski J, Haehnel M, Taguchi M, Liao JC (2012) Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line. PLoS ONE 7:e36661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Partridge BL, Pitcher TJ (1980) The sensory basis of fish schools: relative roles of lateral line and vision. J Comp Physiol 135:315–325

    Article  Google Scholar 

  • Patton P, Windsor SP, Coombs S (2010) Active wall following by Mexican blind cavefish (Astyanax mexicanus). J Comp Physiol A 1–15

    Google Scholar 

  • Pavlov DS, Tyuryukov SN (1993) The role of lateral-line organs and equilibrium in the behavior and orientation of the dace, Leuciscus leuciscus, in a turbulent flow. J Ichthyol 33:45–55

    Google Scholar 

  • Peach MB (2002) Rheotaxis by epaulette sharks, Hemiscyllium ocellatum (Chondrichthyes: Hemiscylliidae), on a coral reef flat. Aust J Zool 50:407–414

    Article  Google Scholar 

  • Pitcher TJ, Partridge BL, Wardle CS (1976) A blind fish can school. Science 194:963–965

    Article  CAS  PubMed  Google Scholar 

  • Pohlmann K, Grasso FW, Breithaupt T (2001) Tracking wakes: The nocturnal predatory strategy of piscivorous catfish. Proc Natl Acad Sci USA 98:7371–7374

    Article  CAS  PubMed  Google Scholar 

  • Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207:2971–2978

    Article  PubMed  Google Scholar 

  • Preuss T, Osei-Bonsu PE, Weiss SA, Wang C, Faber DS (2006) Neural representation of object approach in a decision-making motor circuit. J Neurosci 26:3454–3464

    Google Scholar 

  • Przybilla A, Kunze S, Rudert A, Bleckmann H, Brücker C (2010) Entraining in trout: a behavioural and hydrodynamic analysis. J Exp Biol 213:2976

    Article  PubMed  Google Scholar 

  • Radakov DV (1973) Schooling in the ecology of fish. J. Wiley

    Google Scholar 

  • Ren Z, Mohseni K (2012) A model of the lateral line of fish for vortex sensing. Bioinspiration Biomimetics 7:036016

    Article  PubMed  Google Scholar 

  • Roberts BL, Meredith GE (1989) The efferent system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York; Berlin, pp 445–459

    Chapter  Google Scholar 

  • Roberts BL, Russell IJ (1972) The activity of lateral-line efferent neurones in stationary and swimming dogfish. J Exp Biol 57:435–448

    Google Scholar 

  • Sand O, Bleckmann H (2008) Orientation to auditory and lateral line stimuli. Fish Bioacoust 183–231

    Google Scholar 

  • Schellart NAM (1992) Interrelations between the auditory, the visual and the lateral line systems of teleosts; a mini-review of modelling sensory capabilities. Neth J Zool 42:459–477

    Google Scholar 

  • Schellart NAM, Kroese ABA (1989) Interrelationship of acousticolateral and visual systems in the teleost midbrain. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York; Berlin, pp 421–443

    Chapter  Google Scholar 

  • Schemmel C (1967) Comparative studies of the cutaneous sense organs in epigean and hypogean forms of Astyanax with regard to the evolution of Cavernicoles. Z Morphol Tiere 61:255–316

    Article  Google Scholar 

  • Schmitz A, Bleckmann H, Mogdans J (2008) Organization of the superficial neuromast system in goldfish, Carassius auratus. J Morphol 269:751–761

    Article  PubMed  Google Scholar 

  • Schriefer JE, Hale ME (2004) Strikes and startles of northern pike (Esox lucius): a comparison of muscle activity and kinematics between S-start behaviors. J Exp Biol 207:535–544

    Article  PubMed  Google Scholar 

  • Schwartz E (1965) Bau und Funktion der Seitenlinie des Streifenhechtlings (Aplocheilus lineatus Cuv. u. Val.). Z Vergl Physiol 50:55–87

    Article  Google Scholar 

  • Sharma S, Coombs S, Patton P, de Perera TB (2009) The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). J Comp Physiol A 195:225–240

    Article  Google Scholar 

  • Springer AD, Easter SS, Jr., Agranoff BW (1977) The role of the optic tectum in various visually mediated behaviors of goldfish. Brain Res 128:393–404

    Google Scholar 

  • Stein BE (1984) Multimodal representation in the superior colliculus and optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 819–841

    Chapter  Google Scholar 

  • Stein BE, Meredith MA (1993) The merging of the senses. MIT Press, Cambridge

    Google Scholar 

  • Stewart WJ, McHenry MJ (2010) Sensing the strike of a predator fish depends on the specific gravity of a prey fish. J Exp Biol 213:3769–3777

    Article  PubMed  Google Scholar 

  • Stewart WJ, Cardenas GS, McHenry MJ (2013) Zebrafish larvae evade predators by sensing water flow. J Exp Biol 216:388–398

    Article  PubMed  Google Scholar 

  • Suli A, Watson GM, Rubel EW, Raible DW (2012) Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS ONE 7:e29727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sutterlin AM, Waddy S (1975) Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis). J Fish Res Board Can 32:2441–2446

    Article  Google Scholar 

  • Teyke T (1985) Collision with and avoidance of obstacles by blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 157:837–843

    Article  CAS  PubMed  Google Scholar 

  • Tittel G (1985) Determination of stimulus direction by the topminnow, Aplocheilus lineatus. A model of two dimensional orientation with the lateral line system. In: Barth FG (ed) Verhandlungen der Deutschen Zoologischen Gesellschaft, vol 78, 1st edn. Gustav Fischer, Stuttgart, p 242

    Google Scholar 

  • Tittel G (1991) Verhaltensphysiologische, ultrastrukturelle und ontogenetische Studien am Seitenliniensystem von Aplocheilus lineatus. Ein vorläufiges Modell zur Richtungsdetermination von Beuteobjekten. Doktorarbeit, pp 1–445

    Google Scholar 

  • Tittel G, Muller U, Schwartz E (1984) Determination of stimulus direction by the topminnow Aplocheilus lineatus. In: Varju D, Schnitzler HU (eds) Localization and orientation in biology and engineering. Springer, Berlin; New York, pp 69–72

    Chapter  Google Scholar 

  • Tricas TC, Highstein SM (1990) Visually mediated inhibition of lateral line primary afferent activity by the octavolateralis efferent system during predation in the free-swimming toadfish, Opsanus tau. Exp Brain Res 83:233–236

    Article  CAS  PubMed  Google Scholar 

  • Tytell ED, Lauder GV (2008) Hydrodynamics of the escape response in bluegill sunfish, Lepomis macrochirus. J Exp Biol 211:3359–3369

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogel S (1994) Life in moving fluids: the physical biology of flow. Princeton University Press, Princeton

    Google Scholar 

  • Webb PW (1982) Avoidance responses of fathead minnow to strikes by four teleost predators. J Comp Physiol A 147:371–378

    Google Scholar 

  • Weissburg MJ (2000) The fluid dynamical context of chemosensory behavior. Biol Bull 198:188–202

    Article  CAS  PubMed  Google Scholar 

  • Windsor SP, Tan D, Montgomery JC (2008) Swimming kinematics and hydrodynamic imaging in the blind Mexican cavefish (Astyanax fasciatus). J Exp Biol 211:2950–2959

    Article  PubMed  Google Scholar 

  • Windsor S, Paris J, de Perera TB (2011) No role for direct touch using the pectoral fins, as an information gathering strategy in a blind fish. J Comp Physiol A 197:321–327

    Article  Google Scholar 

  • Wojtenek W, Mogdans J, Bleckmann H (1998) The responses of midbrain lateral line units of goldfish, Carassius auratus, to objects moving in the water. Zoology 101:69–82

    Google Scholar 

  • Wolfgang M, Anderson J, Grosenbaugh M, Yue D, Triantafyllou M (1999) Near-body flow dynamics in swimming fish. J Exp Biol 202:2303–2327

    PubMed  Google Scholar 

  • Wubbels RJ, Schellart NAM, Goossens JHHLM (1995) Mapping of sound direction in the trout lower midbrain. Neurosci Lett 199:179–182

    Article  CAS  PubMed  Google Scholar 

  • Wullimann MF, Grothe B (2013) The central nervous organization of the lateral line system. In: Coombs S, Bleckmann H, Popper AN, Fay RR (eds) The lateral line system. Springer, NY

    Google Scholar 

  • Zeddies DG, Fay RR (2005) Development of the acoustically evoked behavioral response in zebrafish to pure tones. J Exp Biol 208:1363–1372

    Article  PubMed  Google Scholar 

  • Zittlau KE, Claas B, Münz H (1986) Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J Comp Physiol A 158:469–477

    Article  Google Scholar 

  • Zottoli S, Bentley A, Prendergast B, Rieff H (1995) Comparative studies on the Mauthner cell of teleost fish in relation to sensory input. Brain Behav Evol 46:151–164

    Google Scholar 

  • Zottoli SJ, Cioni C, Seyfarth E (2007) Reticulospinal neurons in anamniotic vertebrates: a celebration of Alberto Stefanelli’s contributions to comparative neuroscience. Brain Res Bull 74:295–306

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Holger Krapp and Badri Ranganathan for their comments on earlier drafts of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheryl Coombs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coombs, S., Montgomery, J. (2014). The Role of Flow and the Lateral Line in the Multisensory Guidance of Orienting Behaviors. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_3

Download citation

Publish with us

Policies and ethics