Skip to main content

Analysis of Tissue Mineral Fiber Content

  • Chapter
  • First Online:
Pathology of Asbestos-Associated Diseases

Abstract

The development of techniques for assaying the mineral fiber content of tissues has provided the opportunity to correlate the occurrence of various fiber-related diseases with the cumulative fiber burdens in the target organ. Exposure to mineral fibers generally occurs through the inhalation of airborne fibers, and thus the respiratory tract is the site of most asbestos-related diseases. Consequently, most studies of tissue fiber burdens have concentrated on the analysis of lung parenchyma [1]. It is the purpose of this chapter to review the various techniques which have been developed for the analysis of tissue fiber burdens, noting the advantages and limitations of each. The morphologic, crystallographic, and chemical features of the various types of asbestos are reviewed in Chap. 1 and the structure and nature of asbestos bodies in Chap. 3. In addition, the relationship between tissue asbestos burden and the various asbestos-associated diseases (see Chaps. 4, 5, 6, and 7) and the various categories of occupational and environmental exposures (see Chap. 2) will also be explored in the present chapter. Finally, the overall contribution of the various types of asbestos and non-asbestos mineral fibers to the total mineral fiber burden will be discussed in relationship to the biological activity and pathogenicity of the various fiber types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roggli VL (1990) Human disease consequences of fiber exposures - a review of human lung pathology and fiber burden data. Environ Health Perspect 88:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berkley C, Langer AM, Baden V (1967) Instrumental analysis of inspired fibrous pulmonary particulates. N Y Acad Sci Trans 30:331–350

    Article  CAS  Google Scholar 

  3. Langer AM, Selikoff IJ, Sastre A (1971) Chrysotile asbestos in the lungs of persons in New York City. Arch Environ Health 22:348–361

    Article  CAS  PubMed  Google Scholar 

  4. Langer AM, Rubin IB, Selikoff IJ (1972) Chemical characterization of asbestos body cores by electron microprobe analysis. J Histochem Cytochem 20:723–734

    Google Scholar 

  5. Langer AM, Rubin IB, Selikoff IJ, Pooley FD (1972) Chemical characterization of uncoated asbestos fibers from the lungs of asbestos workers by electron microprobe analysis. J Histochem Cytochem 20:735–740

    Article  CAS  PubMed  Google Scholar 

  6. Langer AM, Ashley R, Baden V, Berkley C, Hammond EC, Mackler AD, Maggiore CJ, Nicholson WJ, Rohl AN, Rubin IB, Sastre A, Selikoff IJ (1973) Identification of asbestos in human tissues. J Occup Med 15:287–295

    CAS  PubMed  Google Scholar 

  7. Langer AM, Mackler AD, Pooley FD (1974) Electron microscopical investigation of asbestos fibers. Environ Health Perspect 9:63–80

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pooley FD (1975) The identification of asbestos dust with an electron microscope analyser. Ann Occup Hyg 18:181–186

    CAS  PubMed  Google Scholar 

  9. Hayashi H (1978) Energy dispersive x-ray analysis of asbestos fibers. Clay Sci 5:145–154

    CAS  Google Scholar 

  10. Abraham JL (1978) Recent advances in pneumoconiosis: the pathologists’ role in etiologic diagnosis. In: The lung, IAP monograph, vol 19. Williams & Wilkins, Baltimore, pp 96–137

    Google Scholar 

  11. Churg A (1982) Fiber counting and analysis in the diagnosis of asbestos-related disease. Hum Pathol 13:381–392

    Article  CAS  PubMed  Google Scholar 

  12. Roggli VL, Shelburne JD (1982) New concepts in the diagnosis of mineral pneumoconioses. Semin Respir Med 4:128–138

    Article  Google Scholar 

  13. Vallyathan V, Green FHY (1984) The role of analytical techniques in the diagnosis of asbestos-associated disease. CRC Crit Rev Clin Lab Sci 22:1–42

    Article  Google Scholar 

  14. Churg A (1986) Analysis of asbestos fibers from lung tissue: research and diagnostic uses. Semin Respir Med 7:281–288

    Article  Google Scholar 

  15. Whitwell F, Scott J, Grimshaw M (1977) Relationship between occupations and asbestos fibre content of the lungs in patients with pleural mesothelioma, lung cancer, and other diseases. Thorax 32:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Warnock ML, Kuwahara TJ, Wolery G (1983) The relation of asbestos burden to asbestosis and lung cancer. Pathol Annu 18(2):109–145

    PubMed  Google Scholar 

  17. Roggli VL, Pratt PC, Brody AR (1986) Asbestos content of lung tissue in asbestos associated diseases: a study of 110 cases. Br J Ind Med 43:18–28

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wagner JC, Moncrief CB, Coles R, Griffiths DM, Munday DE (1986) Correlation between fibre content of the lungs and disease in naval dockyard workers. Br J Ind Med 43:391–395

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Roggli VL (1998) Fiber analysis, Ch 23. In: Rom WN (ed) Environmental and occupational medicine, 3rd edn. Lippincott-Raven, New York, pp 335–347

    Google Scholar 

  20. Dodson RF, Atkinson MA (2006) Measurements of asbestos burdens in tissues. Ann N Y Acad Sci 1076:281–291

    Article  PubMed  Google Scholar 

  21. Roggli VL, Vollmer RT (2008) Twenty-five years of fiber analysis: what have we learned? Hum Pathol 39:307–315

    Article  CAS  PubMed  Google Scholar 

  22. Kane PB, Goldman SL, Pillai BH, Bergofsky EH (1977) Diagnosis of asbestosis by transbronchial biopsy: a method to facilitate demonstration of ferruginous bodies. Am Rev Respir Dis 115:689–694

    CAS  PubMed  Google Scholar 

  23. Dodson RF, Hurst GA, Williams MG, Corn C, Greenberg SD (1988) Comparison of light and electron microscopy for defining occupational asbestos exposure in transbronchial lung biopsies. Chest 94:366–370

    Article  CAS  PubMed  Google Scholar 

  24. Kohyama N, Hiroko K, Kunihiko Y, Yoshizumi S (1992) Evaluation of low level asbestos exposure by transbronchial lung biopsy with analytical electron microscopy. J Electron Microsc 42:315–327

    Google Scholar 

  25. Roggli VL (1988) Preparatory techniques for the quantitative analysis of asbestos in tissues. In: Bailey GW (ed) Proceedings of the 46th annual meeting of the electron microscopy society of America. San Francisco Press, Inc, San Francisco, pp 84–85

    Google Scholar 

  26. Roggli VL (1991) Mineral fiber content of lung tissue in patients with malignant mesothelioma, Ch 6. In: Henderson DW, Shilkin KB, Langlois SLP, Whitaker D (eds) Malignant mesothelioma. Hemisphere Pub Corp, Washington, DC, pp 201–222

    Google Scholar 

  27. Gylseth B, Baunan RH, Bruun R (1981) Analysis of inorganic fiber concentrations in biological samples by scanning electron microscopy. Scand J Work Environ Health 7:101–108

    Article  CAS  PubMed  Google Scholar 

  28. O’Sullivan MF, Corn CJ, Dodson RF (1987) Comparative efficiency of Nuclepore filters of various pore sizes as used in digestion studies of tissue. Environ Res 43:97–103

    Article  PubMed  Google Scholar 

  29. Morgan A, Holmes A (1984) The distribution and characteristics of asbestos fibers in the lungs of Finnish anthophyllite mine-workers. Environ Res 33:62–75

    Article  CAS  PubMed  Google Scholar 

  30. Ashcroft T, Heppleston AG (1973) The optical and electron microscopic determination of pulmonary asbestos fiber concentration and its relation to the human pathological reaction. J Clin Pathol 26:224–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sebastien P, Fondimare A, Bignon J, Monchaux G, Desbordes J, Bonnaud G (1977) Topographic distribution of asbestos fibers in human lung in relation to occupational and nonoccupational exposure. In: Walton WH, McGovern B (eds) Inhaled particles IV. Pergamon Press, Oxford, pp 435–444

    Google Scholar 

  32. Neumann V, Löseke S, Tannapfel A (2011) Mesothelioma and analysis of tissue fiber content, Ch 6. In: Tannapfel A (ed) Malignant mesothelioma. Springer, Berlin, pp 79–95

    Chapter  Google Scholar 

  33. Roggli VL (1989) Scanning electron microscopic analysis of mineral fibers in human lungs, Ch 5. In: Ingram P, Shelburne JD, Roggli VL (eds) Microprobe analysis in medicine. Hemisphere Pub. Corp, New York, pp 97–110

    Google Scholar 

  34. Ferrell RE Jr, Paulson GG, Walker CW (1975) Evaluation of an SEM-EDS method for identification of chrysotile. Scan Electron Microsc 11:537–546

    Google Scholar 

  35. Millette JR, McFarren EF (1976) EDS of waterborne asbestos fibers in TEM, SEM and STEM. Scanning Electron Microsc 111:451–460

    Google Scholar 

  36. Johnson GG, White EW, Strickler D, Hoover R (1976) Image analysis techniques. In: Asher IM, McGrath PP (eds) Symposium on electron microscopy of microfibers: proceedings of the first FDA office of science summer symposium. GPO, Washington, DC, pp 76–82

    Google Scholar 

  37. Kenny LC (1984) Asbestos fibre counting by image analysis - the performance of the Manchester Asbestos Program on Magiscan. Ann Occup Hyg 28:401–415

    CAS  PubMed  Google Scholar 

  38. Kenny LC (1988) Automated analysis of asbestos clearance samples. Ann Occup Hyg 32:115–128

    CAS  Google Scholar 

  39. Ruud CO, Barrett CS, Russell PA, Clark RL (1976) Selected area electron diffraction and energy dispersive x-ray analysis for the identification of asbestos fibres, a comparison. Micron 7:115–132

    CAS  Google Scholar 

  40. Churg A (1989) Quantitative methods for analysis of disease induced by asbestos and other mineral particles using the transmission electron microscope, Ch 4. In: Ingram P, Shelburne JD, Roggli VL (eds) Microprobe analysis in medicine. Hemisphere Pub Corp, New York, pp 79–95

    Google Scholar 

  41. Churg A, Sakoda N, Warnock ML (1977) A simple method for preparing ferruginous bodies for electron microscopic examination. Am J Clin Pathol 68:513–517

    Article  CAS  PubMed  Google Scholar 

  42. Webber JS, Czuhanich AG, Carhart LJ (2007) Performance of membrane filters used for TEM analysis of asbestos. J Occup Environ Hyg 4:780–789

    Article  CAS  PubMed  Google Scholar 

  43. Schraufnagel D, Ingram P, Roggli VL, Shelburne JD (1990) An introduction to analytical electron microscopy and microprobe analysis: techniques and tools to study the lung. In: Schraufnagel D (ed) Electron microscopy of the lung. Marcel Dekker, New York, pp 1–46

    Google Scholar 

  44. Yatchmenoff B (1988) A new confocal scanning optical microscope. Am Lab 20:58, 60–62, 64, 66

    CAS  Google Scholar 

  45. MacDonald JL, Kane AB (1986) Identification of asbestos fibers within single cells. Lab Invest 55:177–185

    Google Scholar 

  46. Geiss RH (1976) Electron diffraction from submicron areas using STEM. Scan Electron Microsc 11:337–344

    Google Scholar 

  47. Gylseth B, Churg A, Davis JMG, Johnson N, Morgan A, Mowe G, Rogers A, Roggli V (1985) Analysis of asbestos fibers and asbestos bodies in tissue samples from human lung: an international interlaboratory trial. Scand J Work Environ Health 11:107–110

    Article  CAS  PubMed  Google Scholar 

  48. Gylseth B, Baunan RH, Overaae L (1982) Analysis of fibers in human lung tissue. Br J Ind Med 39:191–195

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Corn CJ, Williams MG Jr, Dodson RF (1987) Electron microscopic analysis of residual asbestos remaining in preparative vials following bleach digestion. J Electron Microsc Tech 6:1–6

    Article  Google Scholar 

  50. Steel EB, Small JA (1985) Accuracy of transmission electron microscopy for the analysis of asbestos in ambient environments. Anal Chem 57:209–213

    Article  CAS  Google Scholar 

  51. Ogden TL, Shenton-Taylor T, Cherrie JW, Crawford NP, Moorcroft S, Duggan MJ, Jackson PA, Treble RD (1986) Within-laboratory quality control of asbestos counting. Ann Occup Hyg 30:411–425

    CAS  PubMed  Google Scholar 

  52. Morgan A, Holmes A (1983) Distribution and characteristics of amphibole asbestos fibres in the left lung of an insulation worker measured with the light microscope. Br J Ind Med 40:45–50

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Roggli VL, Greenberg SD, Seitzman LH, McGavran MH, Hurst GA, Spivey CG, Nelson KG, Hieger LR (1980) Pulmonary fibrosis, carcinoma, and ferruginous body counts in amosite asbestos workers: a study of six cases. Am J Clin Pathol 73:496–503

    Article  CAS  PubMed  Google Scholar 

  54. Wagner JC, Pooley FD (1986) Mineral fibres and mesothelioma. Thorax 41:161–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Churg A (1988) Chrysotile, tremolite, and malignant mesothelioma in man. Chest 93:621–628

    Article  CAS  PubMed  Google Scholar 

  56. Churg A, Vedal S (1994) Fiber burden and patterns of asbestos-related disease in workers with heavy mixed amosite and chrysotile exposure. Am J Respir Crit Care Med 150:663–669

    Article  CAS  PubMed  Google Scholar 

  57. Roggli VL, Gibbs AR, Attanoos R, Churg A, Popper H, Cagle P, Corrin B, Franks T, Galateau-Sallé F, Galvin J, Hasleton P, Henderson D, Honma K (2010) Pathology of asbestosis: an update of the diagnostic criteria. Report of the Asbestosis Committee of the College of American Pathologists and Pulmonary Pathology Society. Arch Pathol Lab Med 134:462–480

    PubMed  Google Scholar 

  58. Roggli VL, Pratt PC (1983) Numbers of asbestos bodies on iron-stained tissue sections in relation to asbestos body counts in lung tissue digests. Hum Pathol 14:355–361

    Article  CAS  PubMed  Google Scholar 

  59. Schneider F, Sporn TA, Roggli VL (2010) Asbestos fiber content of lungs with diffuse interstitial fibrosis: an analytical scanning electron microscopic analysis of 249 cases. Arch Pathol Lab Med 134:457–461

    PubMed  Google Scholar 

  60. Pratt PC (1968) Role of silica in progressive massive fibrosis in coal workers’ pneumoconiosis. Arch Environ Health 16:734–737

    Article  CAS  PubMed  Google Scholar 

  61. Roggli VL (1989) Pathology of human asbestosis: a critical review. In: Fenoglio CM (ed) Advances in pathology, vol 2. Yearbook Pub., Inc, Chicago, pp 31–60

    Google Scholar 

  62. Srebo SH, Roggli VL (1994) Asbestos-related disease associated with exposure to asbestiform tremolite. Am J Ind Med 26:809–819

    Article  Google Scholar 

  63. Zeren EH, Gumurdulu D, Roggli VL, Zorludemir S, Erkisi M, Tuncer I (2000) Environmental malignant mesothelioma in Southern Anatolia: a study of 50 cases. Environ Health Perspect 108:1047–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Timbrell V, Ashcroft T, Goldstein B, Heyworth F, Meurman LO, Rendall REG, Reynolds JA, Shilkin KB, Whitaker D (1988) Relationships between retained amphibole fibers and fibrosis in human lung tissue specimens. Ann Occup Hyg 32:323–340

    Google Scholar 

  65. Lippmann M (1988) Asbestos exposure indices. Environ Res 46:86–106

    Article  CAS  PubMed  Google Scholar 

  66. Churg A, Wright JL, De Paoli L, Wiggs B (1989) Mineralogic correlates of fibrosis in chrysotile miners and millers. Am Rev Respir Dis 139:891–896

    Article  CAS  PubMed  Google Scholar 

  67. Vorwald AJ, Durkan TM, Pratt PC (1951) Experimental studies of asbestosis. Arch Ind Hyg Occup Med 3:1–43

    CAS  Google Scholar 

  68. Wright GW, Kuschner M (1977) The influence of varying lengths of glass and asbestos fibers on tissue response in guinea pigs. In: Walton WH (ed) Inhaled particles IV. Permanon Press, Oxford, pp 455–474

    Google Scholar 

  69. Davis JMG, Beckett ST, Bolton RE, Collings P, Middleton AP (1978) Mass and number of fibres in the pathogenesis of asbestos-related lung disease in rats. Br J Cancer 37:673–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Crapo JD, Barry BE, Brody AR, O’Neil JJ (1980) Morphological, morphometric, and x-ray microanalytical studies on lung tissue of rats exposed to chrysotile asbestos in inhalation chambers. In: Wagner JC (ed) Biological effects of mineral fibres, vol 1. IARC Scientific Publications, Lyon, pp 273–283

    Google Scholar 

  71. Lee KP, Barras CE, Griffith FD, Waritz RS, Lapin CA (1981) Comparative pulmonary responses to inhaled inorganic fibers with asbestos and fiberglass. Environ Res 24:167–191

    Article  CAS  PubMed  Google Scholar 

  72. Gross P (1974) Is short-fibered asbestos dust a biological hazard? Arch Environ Health 29:115–117

    Article  CAS  PubMed  Google Scholar 

  73. Gylseth B, Mowe G, Skaug V, Wannag A (1981) Inorganic fibers in lung tissue from patients with pleural plaques or malignant mesothelioma. Scand J Work Environ Health 7:109–113

    Article  CAS  PubMed  Google Scholar 

  74. Mowe G, Gylseth B, Hartveit F, Skaug V (1985) Fiber concentration in lung tissue of patients with malignant mesothelioma: a case-control study. Cancer 56:1089–1093

    Article  CAS  PubMed  Google Scholar 

  75. Dodson RF, O’Sullivan M, Corn CJ, McLarty JW, Hammar SP (1997) Analysis of asbestos fiber burden in lung tissue from mesothelioma patients. Ultrastruct Pathol 21:321–336

    Article  CAS  PubMed  Google Scholar 

  76. Churg A, Wright JL, Vedal S (1993) Fiber burden and pattern of asbestos-related disease in chrysotile miners and millers. Am Rev Respir Dis 148:25–31

    Article  CAS  PubMed  Google Scholar 

  77. Gaudichet A, Janson X, Monchaux G, Dufour G, Sebastien P, DeLajartre AY, Bignon J (1988) Assessment by analytical microscopy of the total lung fibre burden in mesothelioma patients matched with four other pathological series. Ann Occup Hyg 32(Suppl 1):213–223

    Google Scholar 

  78. Warnock ML (1989) Lung asbestos burden in shipyard and construction workers with mesothelioma: comparison with burdens in subjects with asbestosis or lung cancer. Environ Res 50:68–85

    Article  CAS  PubMed  Google Scholar 

  79. Dodson RF, Graef R, Shepherd S, O’Sullivan M, Levin J (2005) Asbestos burden in cases of mesothelioma from individuals from various regions of the United States. Ultrastruct Pathol 29:415–433

    Article  PubMed  Google Scholar 

  80. Kishimoto T, Okada K, Sato T, Ono T, Ito H (1989) Evaluation of the pleural malignant mesothelioma patients with the relation of asbestos exposure. Environ Res 48:42–48

    Article  CAS  PubMed  Google Scholar 

  81. Browne K, Smither WJ (1983) Asbestos-related mesothelioma: factors discriminating between pleural and peritoneal sites. Br J Ind Med 40:145–152

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Srebro SH, Roggli VL, Samsa GP (1995) Malignant mesothelioma associated with low pulmonary tissue asbestos burdens: a light and scanning electron microscopic analysis of 18 cases. Mod Pathol 8:614–621

    CAS  PubMed  Google Scholar 

  83. Roggli VL, Pratt PC, Brody AR (1993) Asbestos fiber type in malignant mesothelioma: an analytical electron microscopic study of 94 cases. Am J Ind Med 23:605–614

    Article  CAS  PubMed  Google Scholar 

  84. McDonald JC, Armstrong B, Case B, Doell B, McCaughey WTE, McDonald AD, Sebastien P (1989) Mesothelioma and asbestos fiber type: evidence from lung tissue analyses. Cancer 63:1544–1547

    Article  CAS  PubMed  Google Scholar 

  85. Rogers AJ, Leigh J, Berry G, Ferguson DA, Mulder HB, Ackad M (1991) Relationship between lung asbestos fiber type and concentration and relative risk of mesothelioma: a case–control study. Cancer 67:1912–1920

    Article  CAS  PubMed  Google Scholar 

  86. Neumann V, Löseke S, Tannapfel A (2011) Mesothelioma and analysis of tissue fiber content. Recent Results Cancer Res 189:79–95

    Article  CAS  PubMed  Google Scholar 

  87. Roggli VL (1995) Malignant mesothelioma and duration of asbestos exposure: correlation with tissue mineral fiber content. Ann Occup Hyg 39:363–374

    Article  CAS  PubMed  Google Scholar 

  88. Roggli VL, Sharma A, Butnor KJ, Sporn T, Vollmer RT (2002) Malignant mesothelioma and occupational exposure to asbestos: a clinicopathological correlation of 1445 cases. Ultrastruct Pathol 26:1–11

    Article  Google Scholar 

  89. Roggli VL, Oury TD, Moffatt EJ (1997) Malignant mesothelioma in women. In: Rosen PP, Fechner RE (eds) Anatomic pathology, vol 2. ASCP Press, Chicago, pp 147–163

    Google Scholar 

  90. Stanton MF, Layard M, Tegeris A, Miller E, May M, Morgan E, Smith A (1981) Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst 67:965–975

    CAS  PubMed  Google Scholar 

  91. Churg A, Wiggs B (1984) Fiber size and number in amphibole-asbestos-induced mesothelioma. Am J Pathol 115:437–442

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Churg A, Wiggs B, De Paoli L, Kampe B, Stevens B (1984) Lung asbestos content in chrysotile workers with mesothelioma. Am Rev Respir Dis 130:1042–1045

    CAS  PubMed  Google Scholar 

  93. Suzuki Y, Yuen SR (2001) Asbestos tissue burden study on human malignant mesothelioma. Ind Health 39:150–160

    Article  CAS  PubMed  Google Scholar 

  94. Suzuki Y, Yuen SR, Ashley R (2005) Short, thin asbestos fibers contribute to the development of human malignant mesothelioma: pathological evidence. Int J Hyg Environ Health 208:201–210

    Article  CAS  PubMed  Google Scholar 

  95. Dodson RF, Williams MG, Corn CJ, Brollo A, Bianchi C (1990) Asbestos content of lung tissue, lymph nodes, and pleural plaques from former shipyard workers. Am Rev Respir Dis 142:843–847

    Article  CAS  PubMed  Google Scholar 

  96. Gibbs AR, Stephens M, Griffiths DM, Blight BJN, Pooley FD (1991) Fibre distribution in the lungs and pleura of subjects with asbestos related diffuse pleural fibrosis. Br J Ind Med 48:762–770

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Boutin C, Dumortier P, Rey F, Viallat JR, De Vuyst P (1996) Black spots concentrate oncogenic asbestos fibers in the parietal pleura. Am J Respir Crit Care Med 153:444–449

    Article  CAS  PubMed  Google Scholar 

  98. Dodson RF, O’Sullivan MF, Huang J, Holiday DB, Hammar SP (2000) Asbestos in extrapulmonary sites – omentum and mesentery. Chest 117:486–493

    Article  CAS  PubMed  Google Scholar 

  99. Warnock ML, Prescott BT, Kuwahara TJ (1982) Numbers and types of asbestos fibers in subjects with pleural plaques. Am J Pathol 109:37–46

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Churg A (1982) Asbestos fibers and pleural plaques in a general autopsy population. Am J Pathol 109:88–96

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Stephens M, Gibbs AR, Pooley FD, Wagner JC (1987) Asbestos induced diffuse pleural fibrosis: pathology and mineralogy. Thorax 42:583–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Voisin C, Fisekci F, Voisin-Saltiel S, Ameille J, Brochard P, Pairon J-C (1995) Asbestos-related rounded atelectasis: radiologic and mineralogic data in 23 cases. Chest 107:477–481

    Article  CAS  PubMed  Google Scholar 

  103. Andrion A, Colombo A, Mollo F (1982) Lung asbestos bodies and pleural plaques at autopsy. La Ricerca Clin Lab 12:461–468

    CAS  Google Scholar 

  104. Warnock ML, Isenberg W (1986) Asbestos burden and the pathology of lung cancer. Chest 89:20–26

    Article  CAS  PubMed  Google Scholar 

  105. Anttila S, Karjalainen A, Taikina-aho O, Kyyronen P, Vainio H (1993) Lung cancer in the lower lobe is associated with pulmonary asbestos fiber count and fiber size. Environ Health Perspect 101:166–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dodson RF, Brooks DR, O’Sullivan M, Hammar SP (2004) Quantitative analysis of asbestos burden in a series of individuals with lung cancer and a history of exposure to asbestos. Inhal Toxicol 16:637–647

    Article  CAS  PubMed  Google Scholar 

  107. Karjalainen A, Anttila S, Vanhala E, Vainio H (1994) Asbestos exposure and the risk of lung cancer in a general urban population. Scand J Work Environ Health 20:243–250

    Article  CAS  PubMed  Google Scholar 

  108. Roggli VL, Sanders LL (2000) Asbestos content of lung tissue and carcinoma of the lung: a clinicopathologic correlation and mineral fiber analysis of 234 cases. Ann Occup Hyg 44:109–117

    Article  CAS  PubMed  Google Scholar 

  109. Gaensler EA, McLoud TC, Carrington CB (1985) Thoracic surgical problems in asbestos-related disorders. Ann Thorac Surg 40:82–96

    Article  CAS  PubMed  Google Scholar 

  110. Churg A, Warnock ML (1980) Asbestos fibers in the general population. Am Rev Respir Dis 122:669–678

    Article  CAS  PubMed  Google Scholar 

  111. Case BW, Sebastien P (1987) Environmental and occupational exposures to chrysotile asbestos: a comparative microanalytic study. Arch Environ Health 42:185–191

    CAS  PubMed  Google Scholar 

  112. Hammar SP, Dodson RF (2008) Asbestos, Ch 27. In: Tomashefski JF, Cagle PT, Farver CF, Fraire AE (eds) Dail & Hammar’s pulmonary pathology, 3rd edn. Springer, New York, pp 950–1031

    Chapter  Google Scholar 

  113. Churg A, Warnock ML (1977) Correlation of quantitative asbestos body counts and occupation in urban patients. Arch Pathol Lab Med 101:629–634

    CAS  PubMed  Google Scholar 

  114. Tuomi T, Huuskonen MS, Tammilehto L, Vanhala E, Virtamo M (1991) Occupational exposure to asbestos as evaluated from work histories and analysis of lung tissues from patients with mesothelioma. Br J Ind Med 48:48–52

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Selikoff IJ, Churg J, Hammond EC (1965) Relation between exposure to asbestos and mesothelioma. N Engl J Med 272:560–565

    Article  CAS  PubMed  Google Scholar 

  116. Hammond EC, Selikoff IJ, Seidman H (1979) Asbestos exposure, cigarette smoking, and death rates. In: Selikoff IJ, Hammond EC (eds) Health hazards of asbestos exposure. Ann NY Acad Sci 330:473-490

    Google Scholar 

  117. Becklake MD (1976) Asbestos-related disease of the lungs and other organs: their epidemiology and implications for clinical practice. Am Rev Respir Dis 114:187–227

    CAS  PubMed  Google Scholar 

  118. Talcott JA, Thurber WA, Kantor AF, Gaensler EA, Danahy JF, Antman KH, Li FP (1989) Asbestos-associated diseases in a cohort of cigarette-filter workers. N Engl J Med 321:1220–1223

    Article  CAS  PubMed  Google Scholar 

  119. Newhouse ML, Berry G (1979) Patterns of mortality in asbestos factory workers in London. Ann N Y Acad Sci 330:53–60

    Article  CAS  PubMed  Google Scholar 

  120. Hughes JM, Weill H (1991) Asbestosis as a precursor of asbestos related lung cancer: results of a prospective mortality study. Br J Ind Med 48:229–233

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hirsch A, Di Menza L, Carre A, Harf A, Perdrizet F, Cooreman J, Bignon J (1979) Asbestos risk among full-time workers in an electricity-generating power station. Ann N Y Acad Sci 330:137–145

    Article  CAS  PubMed  Google Scholar 

  122. Leigh J, Davidson P, Hendrie L, Berry D (2002) Malignant mesothelioma in Australia, 1945–2000. Am J Ind Med 41:188–201

    Article  PubMed  Google Scholar 

  123. Eisenstadt HB (1964) Asbestos pleurisy. Dis Chest 46:78–81

    Article  CAS  PubMed  Google Scholar 

  124. Lilis R, Daum S, Anderson H, Sirota M, Andrews G, Selikoff IJ (1979) Asbestos disease in maintenance workers of the chemical industry. Ann N Y Acad Sci 330:127–135

    Article  CAS  PubMed  Google Scholar 

  125. Mancuso TF (1988) Relative risk of mesothelioma among railroad machinists exposed to chrysotile. Am J Ind Med 13:639–657

    Article  CAS  PubMed  Google Scholar 

  126. Mancuso TF (1983) Mesothelioma among machinists in railroad and other industries. Am J Ind Med 4:501–513

    Article  CAS  PubMed  Google Scholar 

  127. Langer AM, McCaughey WTE (1982) Mesothelioma in a brake repair worker. Lancet 2:1101–1103

    Article  CAS  PubMed  Google Scholar 

  128. Huncharek M, Muscat J, Capotorto JV (1989) Pleural mesothelioma in a brake mechanic. Br J Ind Med 46:69–71

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Jarvholm B, Brisman J (1988) Asbestos associated tumors in car mechanics. Br J Ind Med 45:645–646

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Woitowitz HJ, Rodelsperger K (1994) Mesothelioma among car mechanics? Ann Occup Hyg 38:635–638

    Article  CAS  PubMed  Google Scholar 

  131. Butnor KJ, Sporn TA, Roggli VL (2003) Exposure to brake dust and malignant mesothelioma: a study of 10 cases with mineral fiber analyses. Ann Occup Hyg 47:325–330

    CAS  PubMed  Google Scholar 

  132. Marsh GM, Youk AO, Roggli VL (2011) Asbestos fiber concentrations in the lungs of brake repair workers: commercial amphibole levels are predictive of chrysotile levels. Inhal Toxicol 12:681–688

    Article  CAS  Google Scholar 

  133. Dodson RF, Hammar SP, Poye LW (2008) A technical comparison of evaluating asbestos concentration by phase-contrast microscopy (PCM), scanning electron microscopy (SEM), and analytical transmission electron microscopy (ATEM) as illustrated from data generated from a case report. Inhal Toxicol 20:723–732

    Article  CAS  PubMed  Google Scholar 

  134. Gordon RE, Dikman S (2009) Asbestos fiber burden analysis of lung and lymph nodes in 100 cases of mesothelioma (abstr). Am J Respir Crit Care Med 179:A5892

    Google Scholar 

  135. Case BW (2011) Exposure to brake dust and malignant mesothelioma: lung-retained fibre analyses using transmission electron microscopy confirm previous findings at lower magnification by scanning electron microscopy (abstr.). In: Presented at the British Occupational Hygiene Society, Stratford upon Avon, 5–7 Apr 2011

    Google Scholar 

  136. Goodman M, Teta MJ, Hessel PA, Garabrant DH, Craven VA, Scrafford CG, Kelsh MA (2004) Mesothelioma and lung cancer among motor vehicle mechanics: a meta-analysis. Ann Occup Hyg 48:309–326

    PubMed  Google Scholar 

  137. Laden F, Stampfer MJ, Walker AM (2004) Lung cancer and mesothelioma among male automobile mechanics: a review. Rev Environ Health 19:39–61

    Article  PubMed  Google Scholar 

  138. Hessel PA, Teta MJ, Goodman M, Lau E (2004) Mesothelioma among brake mechanics: an expanded analysis of a case control study. Risk Anal 24:547–552

    Article  PubMed  Google Scholar 

  139. Williams RL, Muhlbaier JL (1982) Asbestos brake emissions. Environ Res 29:70–82

    Google Scholar 

  140. Langer AM (2003) Reduction of the biological potential of chrysotile asbestos arising from conditions of service on brake pads. Regul Toxicol Pharmacol 38:71–77

    Article  CAS  PubMed  Google Scholar 

  141. Anderson HA, Lilis R, Daum SM, Selikoff IJ (1979) Asbestosis among household contacts of asbestos factory workers. Ann N Y Acad Sci 330:387–399

    Article  CAS  PubMed  Google Scholar 

  142. Newhouse ML, Thompson H (1965) Mesothelioma of pleura and peritoneum following exposure to asbestos in the London area. Br J Ind Med 22:261–269

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Huncharek M, Capotorto JV, Muscat J (1989) Domestic asbestos exposure, lung fibre burden, and pleural mesothelioma in a housewife. Br J Ind Med 46:354–355

    Google Scholar 

  144. Gibbs AR, Griffiths DM, Pooley FD, Jones JSP (1990) Comparison of fibre types and size distributions in lung tissues of paraoccupational and occupational cases of malignant mesothelioma. Br J Ind Med 47:621–626

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Dodson RF, O’Sullivan M, Brooks DR, Hammar SP (2003) Quantitative analysis of asbestos burden in women with mesothelioma. Am J Ind Med 43:188–195

    Article  PubMed  Google Scholar 

  146. Crump KS, Farrar DB (1989) Statistical analysis of data on airborne asbestos levels collected in an EPA survey of public buildings. Regul Toxicol Pharmacol 10:51–62

    Article  CAS  PubMed  Google Scholar 

  147. Cordier S, Lazar P, Brochard P, Bignon J, Ameille J, Proteau J (1987) Epidemiologic investigation of respiratory effects related to environmental exposure to asbestos inside insulated buildings. Arch Environ Health 42:303–309

    Article  CAS  PubMed  Google Scholar 

  148. Stein RC, Kitajewska JY, Kirkham JB, Tait N, Sinha G, Rudd RM (1989) Pleural mesothelioma resulting from exposure to amosite asbestos in a building. Respir Med 83:237–239

    Article  CAS  PubMed  Google Scholar 

  149. Roggli VL, Longo WE (1992) Mineral fiber content of lung tissue in patients with environmental exposures: household contacts vs. building occupants. Ann N Y Acad Sci 643:511–519

    Article  Google Scholar 

  150. Austin MB, Fechner RE, Roggli VL (1986) Pleural malignant mesothelioma following Wilms’ tumor. Am J Clin Pathol 86:227–230

    Article  CAS  PubMed  Google Scholar 

  151. Pooley FD (1976) An examination of the fibrous mineral content of asbestos lung tissue from the Canadian chrysotile mining industry. Environ Res 12:281–298

    Article  CAS  PubMed  Google Scholar 

  152. Churg A, Warnock ML (1979) Analysis of the cores of asbestos bodies from members of the general population: patients with probable low-degree exposure to asbestos. Am Rev Respir Dis 120:781–786

    CAS  PubMed  Google Scholar 

  153. Gylseth B, Norseth T, Skaug V (1981) Amphibole fibers in a taconite mine and in the lungs of the miners. Am J Ind Med 2:175–184

    Article  CAS  PubMed  Google Scholar 

  154. Rowlands N, Gibbs GW, McDonald AD (1982) Asbestos fibres in the lungs of chrysotile miners and millers - a preliminary report. Ann Occup Hyg 26:411–415

    CAS  PubMed  Google Scholar 

  155. Roggli VL (1987) Analytical electron microscopy of mineral fibers from human lungs. In: Bailey GW (ed) Proceedings of the 45th annual meeting of the Electron Microscopy Society of America. San Francisco Press, Inc, San Francisco, pp 666–669

    Google Scholar 

  156. McDonald AD, McDonald JC, Pooley FD (1982) Mineral fibre content of lung in mesothelial tumours in North America. Ann Occup Hyg 26:417–422

    CAS  PubMed  Google Scholar 

  157. Karjalainen A, Meurman LO, Pukkala E (1994) Four cases of mesothelioma among Finnish anthophyllite miners. Occup Environ Med 51:212–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Phillips JI, Murray J (2010) Malignant mesothelioma in a patient with anthophyllite asbestos fibres in the lungs. Ann Occup Hyg 54:412–416

    CAS  PubMed  Google Scholar 

  159. Churg A (1983) Asbestos fiber content of the lungs in patients with and without asbestos airways disease. Am Rev Respir Dis 127:470–473

    Article  CAS  PubMed  Google Scholar 

  160. Nicholson WJ (1991) Comparative dose–response relationships of asbestos fiber types: magnitudes and uncertainties. Ann N Y Acad Sci 643:74–84

    Article  CAS  PubMed  Google Scholar 

  161. Hodgson JT, Darnton A (2000) The quantitative risk of mesothelioma and lung cancer in relation to asbestos exposure. Ann Occup Hyg 44:565–601

    Article  CAS  PubMed  Google Scholar 

  162. Berman DW, Crump KS (2008) Update of potency factors for asbestos-related lung cancer and mesothelioma. Crit Rev Toxicol 38(Suppl 1):1–47

    Article  CAS  PubMed  Google Scholar 

  163. McDonald AD, Case BW, Churg A, Dufresne A, Gibbs GW, Sebastien P, McDonald JC (1997) Mesothelioma in Quebec chrysotile miners and millers: epidemiology and aetiology. Ann Occup Hyg 41:707–719

    Article  CAS  PubMed  Google Scholar 

  164. Reid A, Berry G, de Klerk N, Hansen J, Heyworth J, Ambrosini G, Fritschi L, Olsen N, Merler E, Musk AW (2007) Age and sex differences in malignant mesothelioma after residential exposure to blue asbestos (crocidolite). Chest 131:376–382

    Article  PubMed  Google Scholar 

  165. Roggli VL (2007) Environmental asbestos contamination: what are the risks? Chest 131:336–338

    Article  PubMed  Google Scholar 

  166. Churg A (1998) Neoplastic asbestos-induced disease, Ch 10. In: Churg A, Green FHY (eds) Pathology of occupational lung disease, 2nd edn. Williams & Wilkins, Baltimore, pp 339–391

    Google Scholar 

  167. Smith AH, Wright CC (1996) Chrysotile asbestos is the main cause of pleural mesothelioma. Am J Ind Med 30:252–266

    Article  CAS  PubMed  Google Scholar 

  168. Begin R, Gauthier J-J, Desmeules M, Ostiguy G (1992) Work-related mesothelioma in Quebec, 1967–1990. Am J Ind Med 22:531–542

    Article  CAS  PubMed  Google Scholar 

  169. Dufresne A, Begin R, Churg A, Masse S (1996) Mineral fiber content of lungs in patients with mesothelioma seeking compensation in Quebec. Am J Respir Crit Care Med 153:711–718

    Article  CAS  PubMed  Google Scholar 

  170. Yano E, Wang Z-M, Wang X-R, Wang M-Z, Lan Y-J (2001) Cancer mortality among workers exposed to amphibole-free chrysotile asbestos. Am J Epidemiol 154:538–543

    Article  CAS  PubMed  Google Scholar 

  171. Tossavainen A, Kotilainen M, Takahashi K, Pan G, Vanhala E (2001) Amphibole fibres in Chinese chrysotile asbestos. Ann Occup Hyg 45:145–152

    Article  CAS  PubMed  Google Scholar 

  172. White N, Nelson G, Murray J (2008) South African experience with asbestos related environmental mesothelioma: is asbestos fiber type important? Regul Toxicol Pharmacol 52(Suppl 1):S92–S96

    Article  CAS  PubMed  Google Scholar 

  173. McDonald JC (2010) Epidemiology of malignant mesothelioma—an outline. Ann Occup Hyg 54:851–857

    PubMed  Google Scholar 

  174. Yarborough CM (2006) Chrysotile as a cause of mesothelioma: an assessment based on epidemiology. Crit Rev Toxicol 36:165–187

    Article  CAS  PubMed  Google Scholar 

  175. Berman DW, Crump KS (2008) A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type. Crit Rev Toxicol 38(Suppl 1):49–73

    Article  CAS  PubMed  Google Scholar 

  176. Kanarek MS (2011) Mesothelioma from chrysotile asbestos: update. Ann Epidemiol 21:688–697

    Article  PubMed  Google Scholar 

  177. Pierce JS, McKinley MA, Paustenbach DJ, Finley BL (2008) An evaluation of reported no-effect chrysotile asbestos exposures for lung cancer and mesothelioma. Crit Rev Toxicol 38:191–214

    Article  CAS  PubMed  Google Scholar 

  178. Craighead JE (1995) Airways and lung, Ch 28. In: Craighead JE (ed) Pathology of environmental and occupational disease. Mosby, St. Louis, pp 455–489

    Google Scholar 

  179. Roggli VL, Vollmer RT, Butnor KJ, Sporn TA (2002) Tremolite and mesothelioma. Ann Occup Hyg 46:447–453

    CAS  PubMed  Google Scholar 

  180. Friedman GK (2006) Clinical diagnosis of asbestos-related disease, Ch 7. In: Dodson RF, Hammar SP (eds) Asbestos: risk assessment, epidemiology, and health effects. Taylor & Francis, Boca Raton, pp 309–380

    Google Scholar 

  181. Harper M, Lee EG, Doorn SS, Hammond O (2008) Differentiating non-asbestiform amphibole and amphibole asbestos by size characteristics. J Occup Environ Hyg 5:761–770

    Article  CAS  PubMed  Google Scholar 

  182. Churg A (1983) Nonasbestos pulmonary mineral fibers in the general population. Environ Res 31:189–200

    Article  CAS  PubMed  Google Scholar 

  183. Stettler LE, Groth DH, Platek SF, Burg JR (1989) Particulate concentrations in urban lungs, Ch 7. In: Ingram P, Shelburne JD, Roggli VL (eds) Microprobe analysis in medicine. Hemisphere Pub. Corp, New York, pp 133–146

    Google Scholar 

  184. Roggli VL (1989) Nonasbestos mineral fibers in human lungs. In: Russell PE (ed) Microbeam analysis. San Francisco Press, Inc, San Francisco, pp 57–59

    Google Scholar 

  185. Kliment CR, Clemens K, Oury TD (2009) North American erionite-associated mesothelioma with pleural plaques and pulmonary fibrosis: a case report. Int J Clin Exp Pathol 2:407–410

    PubMed  Google Scholar 

  186. Groppo C, Tomatis M, Turci F, Gazzano E, Ghigo D, Compagnoni R, Fubini B (2005) Potential toxicity of nonregulated asbestiform minerals: balangeroite from the Western Alps. Part 1: identification and characterization. J Toxicol Environ Health 68:1–19

    Article  CAS  Google Scholar 

  187. Turci F, Tomatis M, Compagnoni R, Fubini B (2009) Role of associated mineral fibres in chrysotile asbestos health effects: the case of balangeroite. Ann Occup Hyg 53:491–497

    CAS  PubMed  Google Scholar 

  188. Moatamed F, Lockey JE, Parry WT (1986) Fiber contamination of vermiculite: a potential occupational and environmental health hazard. Environ Res 41:207–218

    Article  CAS  PubMed  Google Scholar 

  189. Whitehouse AC, Black CB, Heppe MS, Ruckdeschel J, Levin SM (2008) Environmental exposure to Libby asbestos and mesothelioma. Am J Ind Med 51:877–880

    Article  PubMed  Google Scholar 

  190. Duncan KE, Ghio AJ, Dailey LA, Bern AM, Gibbs-Flournoy EA, Padilla-Carlin DJ, Roggli VL, Devlin RB (2010) Effect of size fractionation on the toxicity of amosite and Libby amphibole asbestos. Toxicol Sci 118:420–434

    Article  CAS  PubMed  Google Scholar 

  191. Kelly J, Pratt GC, Johnson J, Messing RB (2006) Community exposure to asbestos from a vermiculite exfoliation plant in NE Minneapolis. Inhal Toxicol 18:941–947

    Article  PubMed  CAS  Google Scholar 

  192. Bruni BM, Pacella A, Tagliani SM, Gianfagna A, Paoletti L (2006) Nature and extent of the exposure to fibrous amphiboles in Biancavilla. Sci Total Environ 370:9–16

    Article  CAS  PubMed  Google Scholar 

  193. Paoletti L, Batisti D, Bruno C, DiPaola M, Gianfagna A, Mastrantonio M, Nesti M, Comba P (2000) Unusually high incidence of malignant pleural mesothelioma in a town of eastern Sicily: an epidemiological and environmental study. Arch Environ Health 55:392–398

    Article  CAS  PubMed  Google Scholar 

  194. Comba P, Gianfagna A, Paoletti L (2003) Pleural mesothelioma cases in Biancavilla are related to a new fluoro-edenite fibrous amphibole. Arch Environ Health 58:229–232

    Article  PubMed  Google Scholar 

  195. Lockey JE, LeMasters G, Levin L, Rice C, Yiin J, Reutman S, Papes D (2002) A longitudinal study of chest radiographic changes of workers in the refractory ceramic fiber industry. Chest 121:2044–2051

    Article  CAS  PubMed  Google Scholar 

  196. Rice CH, Levin LS, Borton EK, Lockey JE, Hilbert TJ, LeMasters GK (2005) Exposures to refractory ceramic fibers in manufacturing and related operations: a 10-year update. J Occup Environ Hyg 2:462–473

    Article  CAS  PubMed  Google Scholar 

  197. Rodelsperger K, Jockel J-H, Pohlabeln H, Romer W, Woitowitz H-J (2001) Asbestos and manmade vitreous fibers as risk factors for diffuse malignant mesothelioma: results from a German hospital-based case–control study. Am J Ind Med 38:1–14

    Google Scholar 

  198. Utell MJ, Maxim LD (2010) Refractory ceramic fiber (RCF) toxicity and epidemiology: a review. Inhal Toxicol 22:500–521

    Article  CAS  PubMed  Google Scholar 

  199. Martin TR, Meyer SW, Luchtel DR (1989) An evaluation of the toxicity of carbon fiber composites for lung cells in vitro and in vivo. Environ Res 49:246–261

    Article  CAS  PubMed  Google Scholar 

  200. Lee JH, Lee SB, Bae GN, Jeon KS, Yoon JU, Ji JH, Sung JH, Lee BG, Lee JH, Yang JS, Kim HY, Kang CS, Yu IJ (2010) Exposure assessment of carbon nanotube manufacturing workplaces. Inhal Toxicol 22:369–381

    Article  CAS  PubMed  Google Scholar 

  201. Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Churg A, Wiggs B (1985) Mineral particles, mineral fibers, and lung cancer. Environ Res 37:364–372

    Article  CAS  PubMed  Google Scholar 

  203. Han JH, Park JD, Sakai K, Hisanaga N, Chang HK, Lee YH, Kwon IH, Choi BS, Chung YH, Kim HY, Yang JS, Cho MH, Yu IJ (2009) Comparison of lung asbestos fiber content in cancer subjects with healthy individuals with no known history of occupational asbestos exposure in Korea. J Toxicol Environ Health A 72:1292–1295

    Article  CAS  PubMed  Google Scholar 

  204. Attanoos RL, Griffiths DM, Gibbs AR (2003) Unusual contaminant fibres on mineral analysis. Histopathology 43:405–406

    Article  CAS  PubMed  Google Scholar 

  205. Roggli VL, Ingram P, Linton RW, Gutknecht WF, Mastin P, Shelburne JD (1984) New techniques for imaging and analyzing lung tissue. Environ Health Perspect 56:163–183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor L. Roggli MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roggli, V.L., Sharma, A. (2014). Analysis of Tissue Mineral Fiber Content. In: Oury, T., Sporn, T., Roggli, V. (eds) Pathology of Asbestos-Associated Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41193-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41193-9_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41192-2

  • Online ISBN: 978-3-642-41193-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics