Skip to main content

Abstract

Human hemoglobin A (Hb) is the main protein component of red blood cells, making up to 97 % of their dry content. Hb plays a crucial role in vertebrates, as it carries oxygen from the lungs to the tissues for their oxidative metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham DJ, Safo MK, Boyiri T, Danso-Danquah RE, Kister J, Poyart C (1995) How allosteric effectors can bind to the same protein residue and produce opposite shifts in the allosteric equilibrium. Biochemistry 34(46):15006–15020

    Article  Google Scholar 

  • Allen BW, Stamler JS, Piantadosi CA (2009) Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol Med 15(10):452–460

    Article  Google Scholar 

  • Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Baudin-Creuza V, Fablet C, Zal F, Green BN, Prome D, Marden MC, Pagnier J, Wajcman H (2002) Hemoglobin Porto Alegre forms a tetramer of tetramers superstructure. Protein Sci 11(1):129–136

    Article  Google Scholar 

  • Behringer RR, Ryan TM, Reilly MP, Asakura T, Palmiter RD, Brinster RL, Townes TM (1989) Synthesis of functional human hemoglobin in transgenic mice. Science 245(4921):971–973

    Article  Google Scholar 

  • Bhattacharya N (2005) Placental umbilical cord whole blood transfusion: a safe and genuine blood substitute for patients of the under-resourced world at emergency. J Am Coll Surg 200(4):557–563

    Article  Google Scholar 

  • Bobofchak KM, Mito T, Texel SJ, Bellelli A, Nemoto M, Traystman RJ, Koehler RC, Brinigar WS, Fronticelli C (2003) A recombinant polymeric hemoglobin with conformational, functional, and physiological characteristics of an in vivo O2 transporter. Am J Physiol Heart Circ Physiol 285(2):H549–H561

    Google Scholar 

  • Bohr C, Hasselbalch K, Krogh A (1904) Ueber einen in biologischer beziehung wichtigen einfluss, den die kohlensa urespannung des blutes auf dessen sauerstoffbindung ubt. Skand Arch Physiol 16:402–412

    Article  Google Scholar 

  • Bösch F, Tsui TY (2012) Carbon monoxide, a two-face for the protection of the liver. Curr Pharm Biotechnol 13(6):803–812

    Article  Google Scholar 

  • Brucker EA (2000) Genetically crosslinked hemoglobin: a structural study. Acta Crystallogr D Biol Crystallogr 56(Pt 7):812–816

    Article  Google Scholar 

  • Bunn HF, Forget BG (1986) Hemoglobin: molecular, genetic and clinical aspects. W. B. Saunders Company, Philadelphia

    Google Scholar 

  • Caccia D, Ronda L, Frassi R, Perrella M, Del Favero E, Bruno S, Pioselli B, Abbruzzetti S, Viappiani C, Mozzarelli A (2009) PEGylation promotes hemoglobin tetramer dissociation. Bioconjug Chem 20(7):1356–1366

    Article  Google Scholar 

  • Chang TMS (1997) Blood substitutes: principles, methods, products and clinical trials. Karger Landes System, Basel

    Google Scholar 

  • Coppola D, Bruno S, Ronda L, Viappiani C, Abbruzzetti S, di Prisco G, Verde C, Mozzarelli A (2011) Low affinity PEGylated hemoglobin from Trematomus bernacchii, a model for hemoglobin-based blood substitutes. BMC Biochem 12:66

    Article  Google Scholar 

  • Dey S, Chakrabarti P, Janin J (2011) A survey of hemoglobin quaternary structures. Proteins 79(10):2861–2870

    Article  Google Scholar 

  • di Prisco G, Eastman JT, Giordano D, Parisi E, Verde C (2007) Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution. Gene 398(1–2):143–155

    Article  Google Scholar 

  • Doherty DH, Doyle MP, Curry SR, Vali RJ, Fattor TJ, Olson JS, Lemon DD (1998) Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat Biotechnol 16(7):672–676

    Article  Google Scholar 

  • Doyle MP, Hoekstra JW (1981) Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Biochem 14(4):351–358

    Article  Google Scholar 

  • Eaton WA, Henry ER, Hofrichter J, Mozzarelli A (1999) Is cooperative oxygen binding by hemoglobin really understood? Nat Struct Biol 6(4):351–358

    Article  Google Scholar 

  • Eich RF, Li T, Lemon DD, Doherty DH, Curry SR, Aitken JF, Mathews AJ, Johnson KA, Smith RD, Phillips GN Jr, Olson JS (1996) Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry 35(22):6976–6983

    Article  Google Scholar 

  • Elmer J, Palmer AF, Cabrales P (2012a) Oxygen delivery during extreme anemia with ultra-pure earthworm hemoglobin. Life Sci 91(17–18):852–859

    Article  Google Scholar 

  • Elmer J, Zorc K, Rameez S, Zhou Y, Cabrales P, Palmer AF (2012b) Hypervolemic infusion of Lumbricus terrestris erythrocruorin purified by tangential-flow filtration. Transfusion 52(8):1729–1740

    Article  Google Scholar 

  • Faggiano S, Bruno S, Ronda L, Pizzonia P, Pioselli B, Mozzarelli A (2011) Modulation of expression and polymerization of hemoglobin Polytaur, a potential blood substitute. Arch Biochem Biophys 505(1):42–47

    Article  Google Scholar 

  • Farmer CS, Kurtz DM Jr, Phillips RS, Ai J, Sanders-Loehr J (2000) A leucine residue “Gates” solvent but not O2 access to the binding pocket of Phascolopsis gouldii hemerythrin. J Biol Chem 275(22):17043–17050

    Article  Google Scholar 

  • Fischer-Fodor E, Mot A, Deac F, Arkosi M, Silaghi-Dumitrescu R (2011) Towards hemerythrin-based blood substitutes: comparative performance to hemoglobin on human leukocytes and umbilical vein endothelial cells. J Biosci 36(2):215–221

    Article  Google Scholar 

  • Fronticelli C, Koehler RC (2009) Design of recombinant hemoglobins for use in transfusion fluids. Crit Care Clin 25(2):357–371

    Google Scholar 

  • Fronticelli C, Koehler RC, Brinigar WS (2007) Recombinant hemoglobins as artificial oxygen carriers. Artif Cells Blood Substit Immobil Biotechnol 35(1):45–52

    Article  Google Scholar 

  • Giangiacomo L, D’Avino R, di Prisco G, Chiancone E (2001) Hemoglobin of the Antarctic fishes Trematomus bernacchii and Trematomus newnesi: structural basis for the increased stability of the liganded tetramer relative to human hemoglobin. Biochemistry 40(10):3062–3068

    Article  Google Scholar 

  • Gladwin M (2007) Unraveling the reactions of nitrite and hemoglobin in signaling, physiology and therapeutics. Comp Biochem Physiol Mol Integr Physiol 146(4):S159–S159

    Article  Google Scholar 

  • Gladwin MT, Grubina R, Doyle MP (2009) The new chemical biology of nitrite reactions with hemoglobin: r-state catalysis, oxidative denitrosylation, and nitrite reductase/anhydrase. Acc Chem Res 42(1):157–167

    Article  Google Scholar 

  • Gow AJ, Stamler JS (1998) Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391(6663):169–173

    Article  Google Scholar 

  • Hartman JC, Argoudelis G, Doherty D, Lemon D, Gorczynski R (1998) Reduced nitric oxide reactivity of a new recombinant human hemoglobin attenuates gastric dysmotility. Eur J Pharmacol 363(2–3):175–178

    Article  Google Scholar 

  • Imai K (1982) Allosteric effects in hemoglobin. Cambridge University Press, Cambridge

    Google Scholar 

  • Isbell TS, Sun C-W, Wu L-C, Teng X, Vitturi DA, Branch BG, Kevil CG, Peng N, Wyss JM, Ambalavanan N, Schwiebert L, Ren J, Pawlik KM, Renfrow MB, Patel RP, Townes TM (2008) SNO-hemoglobin is not essential for red blood cell-dependent hypoxic vasodilation. Nat Med 14(7):773–777

    Article  Google Scholar 

  • Jia L, Bonaventura C, Bonaventura J, Stamler JS (1996) S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380(6571):221–226

    Article  Google Scholar 

  • Jin S, Kurtz DM Jr, Liu ZJ, Rose J, Wang BC (2002) X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase. J Am Chem Soc 124(33):9845–9855

    Article  Google Scholar 

  • Koshland DE Jr, Némethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5(1):365–385

    Article  Google Scholar 

  • Kryatov SV, Rybak-Akimova EV, Schindler S (2005) Kinetics and mechanisms of formation and reactivity of non-heme iron oxygen intermediates. Chem Rev 105(6):2175–2226

    Article  Google Scholar 

  • Loeb A, McIntosh LJ, Raj NR, Longnecker D (1997) Regional vascular effects of rHb1.1, a hemoglobin-based oxygen carrier. J Cardiovasc Pharmacol 30(6):703–710

    Article  Google Scholar 

  • Looker D, Abbott-Brown D, Cozart P, Durfee S, Hoffman S, Mathews AJ, Miller-Roehrich J, Shoemaker S, Trimble S, Fermi G et al (1992) A human recombinant haemoglobin designed for use as a blood substitute. Nature 356(6366):258–260

    Article  Google Scholar 

  • Loop T, Schlensak C, Goebel U (2012) Cytoprotection by inhaled carbon monoxide before cardiopulmonary bypass in preclinical models. Curr Pharm Biotechnol 13(6):797–802

    Article  Google Scholar 

  • McMahon TJ, Moon RE, Luschinger BP, Carraway MS, Stone AE, Stolp BW, Gow AJ, Pawloski JR, Watke P, Singel DJ, Piantadosi CA, Stamler JS (2002) Nitric oxide in the human respiratory cycle. Nat Med 8(7):711–717

    Google Scholar 

  • Monod J, Wyman J, Changeaux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  Google Scholar 

  • Moqattash S, Lutton JD, Rosenthal G, Abu-Hijleh MF, Abraham NG (1997) Effect of blood substitute, recombinant hemoglobin, on in vivo hematopoietic recovery from AZT toxicity. Acta Haematol 98(2):76–82

    Article  Google Scholar 

  • Mot AC, Roman A, Lupan I, Kurtz DM Jr, Silaghi-Dumitrescu R (2010) Towards the development of hemerythrin-based blood substitutes. Protein J 29(6):387–393

    Article  Google Scholar 

  • Olson JS, Foley EW, Rogge C, Tsai A-L, Doyle MP, Lemon DD (2004) No scavenging and the hypertensive effect of hemoglobin-based blood substitutes. Free Radic Biol Med 36(6):685–697

    Article  Google Scholar 

  • Perutz MF (1970) Stereochemistry of cooperative effects in haemoglobin. Nature 228(273):726–739

    Article  Google Scholar 

  • Portoro I, Kocsis L, Herman P, Caccia D, Perrella M, Ronda L, Bruno S, Bettati S, Micalella C, Mozzarelli A, Varga A, Vas M, Lowe KC, Eke A (2008) Towards a novel haemoglobin-based oxygen carrier: Euro-PEG-Hb, physico-chemical properties, vasoactivity and renal filtration. Biochim Biophys Acta 1784(10):1402–1409

    Article  Google Scholar 

  • Rattan S, Rosenthal GJ, Chakder S (1995) Human recombinant hemoglobin (rHb1.1) inhibits nonadrenergic noncholinergic (NANC) nerve-mediated relaxation of internal anal sphincter. J Pharmacol Exp Ther 272(3):1211–1216

    Google Scholar 

  • Schelshorn DW, Schneider A, Kuschinsky W, Weber D, Krüger C, Dittgen T, Bürgers HF, Sabouri F, Gassler N, Bach A, Maurer MH (2009) Expression of hemoglobin in rodent neurons. J Cereb Blood Flow Metab J Int Soc Cereb Blood Flow Metab 29(3):585–595

    Article  Google Scholar 

  • Sharma AC, Gulati A (1994) Effect of diaspirin cross-linked hemoglobin and norepinephrine on systemic hemodynamics and regional circulation in rats. J Lab Clin Med 123(2):299–308

    Google Scholar 

  • Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, Gernert K, Piantadosi CA (1997) Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276(5321):2034–2037

    Article  Google Scholar 

  • Swanson ME, Martin MJ, O’Donnell JK, Hoover K, Lago W, Huntress V, Parsons CT, Pinkert CA, Pilder S, Logan JS (1992) Production of functional human hemoglobin in transgenic swine. Biotechnology 10(5):557–559

    Article  Google Scholar 

  • Szabo A, Karplus M (1972) A mathematical model for structure-function relationships in hemoglobin. Biochem Biophys Res Commun 46(2):855–860

    Article  Google Scholar 

  • Tondo C, Bonaventura J, Bonaventura C, Brunori M, Amiconi G, Antonini E (1974) Functional properties of hemoglobin Porto Alegre (alpha2A beta2 9Ser leads to Cys) and the reactivity of its extra cysteinyl residue. Biochim Biophys Acta 342(1):15–20

    Article  Google Scholar 

  • Vandegriff KD, Young MA, Lohman J, Bellelli A, Samaja M, Malavalli A, Winslow RM (2008) CO-MP4, a polyethylene glycol-conjugated haemoglobin derivative and carbon monoxide carrier that reduces myocardial infarct size in rats. Br J Pharmacol 154(8):1649–1661

    Article  Google Scholar 

  • Varnado CL, Mollan TL, Birukou I, Smith BJ, Henderson DP, Olson JS (2013) Development of recombinant hemoglobin-based oxygen carriers. Antioxid Redox Signal 18(17):2314–2328

    Google Scholar 

  • Viappiani C, Bettati S, Bruno S, Ronda L, Abbruzzetti S, Mozzarelli A, Eaton WA (2004) New insights into allosteric mechanisms from trapping unstable protein conformations in silica gels. Proc Natl Acad Sci U S A 101(40):14414–14419

    Article  Google Scholar 

  • Xu X, Cho M, Spencer NY, Patel N, Huang Z, Shields H, King SB, Gladwin MT, Hogg N, Kim-Shapiro DB (2003) Measurements of nitric oxide on the heme iron and beta-93 thiol of human hemoglobin during cycles of oxygenation and deoxygenation. Proc Natl Acad Sci U S A 100(20):11303–11308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Mozzarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mozzarelli, A., Bruno, S., Ronda, L. (2013). Biochemistry of Hemoglobin. In: Kim, H., Greenburg, A. (eds) Hemoglobin-Based Oxygen Carriers as Red Cell Substitutes and Oxygen Therapeutics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40717-8_3

Download citation

Publish with us

Policies and ethics