Skip to main content

Sate-of-the-Art of Terahertz Science and Technology

  • Chapter
  • First Online:
Frontiers in Optical Methods

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 180))

  • 1939 Accesses

Abstract

Terahertz (THz) science and technology is now globally attracting increasing interest, because explorations in the THz frequency range have become to play an important role in a very diverse field of applications, such as materials, devices, and imaging systems. Those include novel sensing techniques for spectroscopy and imaging in the THz frequency range, innovations in information and communication technology, and new science that emerges with the novel generation and detection techniques of terahertz waves. In this paper, I provide an overview of the current status and future prospects of the THz technology, including our results of laser-emission terahertz microscope (LTEM) and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Tonouchi, Cut. Edge Terahertz Technol. Nat. Photonics 1, 97–105 (2007)

    Article  Google Scholar 

  2. M. Tonouchi, Terahertz Technology (Ohmsha, Tokyo, 2006) (in Japanese)

    Google Scholar 

  3. M. Tonouchi, OYOBUTSURI, textbf75, 60 (2006) (in Japanese)

    Google Scholar 

  4. B. Ferguson, X.-C. Zhang, Materials for terahertz science and technology. Nat. Mater. 1, 26 (2002)

    Article  ADS  Google Scholar 

  5. D. Mittleman (ed.), Sensing with Terhaertz Radiation (Springer, Berlin, 2003)

    Google Scholar 

  6. R. Kohler et al., Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002)

    Article  ADS  Google Scholar 

  7. M. Suzuki, M. Tonouchi, Fe-implanted InGaAs terahertz emitters for 1.56 \(\upmu \)m wavelength excitation. Appl. Phys. Lett. 86, 051104 (2005)

    Article  ADS  Google Scholar 

  8. M. Suzuki, M. Tonouchi et al., Excitation wavelength dependence of terahertz emission fronm semiconductor surface Appl. Phys. Lett. 89, 091111 (2006)

    Google Scholar 

  9. T. Nagatsuma, H. Ito, T. Ishibashi, High-power FR photodiode and their applications. Laser Photon. Rev. 3, 123–137 (2009)

    Google Scholar 

  10. J. Hebling, A.G. Stepanov, G. Almasi, B. Bartal, J. Kuhl, Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts. Appl. Phys. B 78, 593–599 (2004)

    Google Scholar 

  11. J. Hebling et al., Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J. Opt. Soc. Am. B 25, B6–B19 (2008)

    Google Scholar 

  12. Y. Chen, M. Yamaguchi, M. Wang, X.-C. Zhang, Terahertz pulse generation from noble gases App. Phys. Lett. 91, 251116 (2007)

    Google Scholar 

  13. M. Nagai et al., Broadband and high power terahertz pulse generation beyond excitation bandwidth limitation via \(\chi ^{(2)}\) cascaded processes in LiNbO\(_{3}\). Opt. Express 17, 11543 (2009)

    Article  ADS  Google Scholar 

  14. M. Jewariya, M. Nagai, K. Tanaka, Enhancement of terahertz wave generation by cascaded \(\chi ^{(2)}\) processes in LiNbO\(_{3}\). J. Opt. Soc. Am. B 26, A101 (2009)

    Google Scholar 

  15. A.W.M. Lee et al., High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides. Opt. Lett. 32, 2840–2842 (2007)

    Article  ADS  Google Scholar 

  16. A. Wade et al., Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K. Nat. Photon. 3, 41–45 (2009)

    Google Scholar 

  17. S. Suzuki, et al.:Room-temperature fundamental oscillation of RTD at 831GHz. Appl. Phys. Express 2, 054501 (2009)

    Article  ADS  Google Scholar 

  18. Y.M. Meziani et al., Room temperature terahertz emission from grating coupled two-dimensional plasmons. Appl. Phys. Lett. 92, 201108 (2008)

    Google Scholar 

  19. T. Nishimura, N. Magome, H. Kang, T. Otsuji, Spectral Narrowing Effect of a Novel Super-Grating Dual-Gate Structure for Plasmon-Resonant Terahertz Emitter. IEICE Trans. Electron. E92C, 696–701 (2009)

    Article  ADS  Google Scholar 

  20. Y. Kawano, K. Ishibashi, An on-chip near-field terahertz probe and detector. Nat. Photon. 2, 618–621 (2008)

    Article  Google Scholar 

  21. Y. Kawano, Wide-band frequency-tunable terahertz and infrared detection with graphene. Nanotechnol. 24, 214004 (2013)

    Google Scholar 

  22. S. Tohyama et al., New thermally isolated pixel structure for high-resolution (640 X 480) uncooled infrared focal plane arrays. Opt. Eng. 45, 014001 (2006)

    Article  ADS  Google Scholar 

  23. K. Fukunaga et al., Real-time terahertz imaging for art conservation science. J. Euro. Opt. Soc. 3, 08027 (2008)

    Google Scholar 

  24. K. Fukunaga, I. Hosako, I.N. Durling, M. Picollo, Terahertz imaging systems: a non-invasive technique for the analysis of paintings. Proc. SPIE 7391(73910D) (2009)

    Google Scholar 

  25. K. Fukunaga, Non-destructive THz imaging of a Giotto masterpiece IIC News in Conservation, February issue, p. 2 (2009)

    Google Scholar 

  26. S. Atakaramians et al., THz porous fibers: design, fabricatio and experimental characterization. Opt. Express 17, 14053–14062 (2009)

    Article  ADS  Google Scholar 

  27. H.T. Chen et al., Active Terahertz Metamater. Dev. Nat. 444, 597–600 (2006)

    Google Scholar 

  28. L. Ren et al., Carb. Nanotub. Terahertz Polarizer Nano Lett. 9, 2610 (2009)

    Google Scholar 

  29. M. Yoshimura et al., Growth of 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystal and its application to THz wave generation 17PS-24, in Ext. Abs. International Workshop Terahertz Technology, Osaka, 2005

    Google Scholar 

  30. M. Misra et. al., Observation of TO1 Soft Mode in SrTiO\(_{3}\) Film by Terahertz Time Domain Spectroscopy. Appl. Phys. Lett. 87, 182909 (2005)

    Google Scholar 

  31. R. Kinjo et. al., Observation of strain effects of SrTiO3 thin films by terahertz time-domain spectroscopy with a 4-dimethylamino-N-methyl-4-stilbazolium tosylate emitter. Jpn. J. Appl. Phys. 48 (2009) (in press)

    Google Scholar 

  32. N. Kida, H. Murakami, M. Tonouchi, in Terahertz optics in strongly correlated electron systems ed. by K. Sakai. Terahertz Optoelectronics (Springer, Berlin, 2005)

    Google Scholar 

  33. S. Kim, H. Murakami, M. Tonouchi, Transmission-type laser THz emission microscope using a solid immersion lens. IEEE J. Select Topic Quant. Electron. 14, 498 (2008)

    Article  Google Scholar 

  34. M. Tonouchi, M. Yamashita, M. Hangyo, Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa\(_{2}\)Cu\(_{3}\)O\(_{7-\delta }\) thin film strips. J. Appl. Phys. 87, 7366–7375 (2000)

    Article  ADS  Google Scholar 

  35. D.S. Rana et al., Visualization of photoassisted polarization switching and its consequences in BiFeO\(_{3}\) thin films probed by terahertz radiation. Appl. Phys. Lett. 91, 031909 (2007)

    Article  ADS  Google Scholar 

  36. K. Fukunaga et al., Terahertz spectroscopy for art conservation IEICE Electron. Exp.4, 258–263 (2007)

    Google Scholar 

  37. K. Takahashi, N. Kida, M. Tonouchi, Terahertz radiation by an ultrafast spontaneous polarization modulation of multiferroic BiFeO\(_{3}\) thin films. Phys. Rev. Lett. 96, 117402 (2006)

    Article  ADS  Google Scholar 

  38. D.S. Rana, I. Kawayama, K.R. Mavani, K. Takahashi, H. Murakami, M. Tonouchi, Understanding the nature of ultrafast polarization dynamics of ferroelectric memory in the multiferroic BiFeO\(_{3}\) thin films. Adv. Mater. 21, 2881–2885 (2009)

    Article  Google Scholar 

  39. T. Kiwa et al., Chemical sensing plate with a laser-terahertz monitoring system. Appl. Opt. 47, 3324 (2008)

    Article  ADS  Google Scholar 

  40. T. Kiwa et al., A Terahertz chemical microscope to visualize chemical concentration in microfluidic chip. Jpn. J. Appl. Phys. (Exp. Lett.) 46, L1052 (2007)

    Google Scholar 

  41. M. Yamashita et al., Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope. Appl. Phys. Lett. 94, 191104 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Auhtors are grateful to Profs. Asada of Tokyo Institute of Technology, Tanaka of Kyoto University, Nagai of Osaka University, Kiwa of Okayama University, and Drs. Oda of NEC, Fukunaga of NICT, Yamashita of RIKEN, and Kawano of RIKEN for their providing materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Tonouchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tonouchi, M. (2014). Sate-of-the-Art of Terahertz Science and Technology. In: Shudo, Ki., Katayama, I., Ohno, SY. (eds) Frontiers in Optical Methods. Springer Series in Optical Sciences, vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40594-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40594-5_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40593-8

  • Online ISBN: 978-3-642-40594-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics