Skip to main content

Nanostructures in the Terahertz Range

  • Conference paper
  • First Online:
Nano-Structures for Optics and Photonics
  • 3871 Accesses

Abstract

With advances in technology, terahertz imaging and spectroscopy are beginning to move out of the laboratory and find applications in areas as diverse as security screening, medicine, art conservation and field archaeology. Nevertheless, there is still a need to improve upon the performance of existing terahertz systems to achieve greater compactness and robustness, enhanced spatial resolution, more rapid data acquisition times and operation at greater standoff distances. This chapter will review recent technological developments in this direction that make use of nanostructures in the generation, detection and manipulation of terahertz radiation. The chapter will also explain how terahertz spectroscopy can be used as a tool to characterize the ultrafast carrier dynamics of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walker GC, Bowen JW, Matthews W, Roychowdhury S, Labaune J, Mourou G, Menu M, Hodder I, Jackson JB (2013) Sub-surface terahertz imaging through uneven surfaces: visualizing Neolithic wall paintings in Çatalhöyük. Opt Express 21:8126–8134

    Article  ADS  Google Scholar 

  2. Jackson JB, Bowen J, Walker G, Labaune J, Mourou G, Menu M, Fukunaga K (2011) A Survey of terahertz applications in cultural heritage conservation science. IEEE Trans Terahertz Sci Technol 1:220–231

    Article  Google Scholar 

  3. Walker GC, Jackson JB, Giovannacci D, Bowen JW, Delandes B, Labaune J, Mourou G, Menu M, Detalle V (2013) Terahertz analysis of stratified wall plaster at buildings of cultural importance across Europe. In: Pezzati L, Targowski P (eds) Optics for Arts, Architecture and Archaeology IV, Proc. SPIE vol. 8790. Munich, Germany, p 87900H

    Google Scholar 

  4. Kemp MC (2011) Explosives detection by terahertz spectroscopy-a bridge too far? IEEE Trans Terahertz Sci Technol 1:282–292

    Article  Google Scholar 

  5. Brown E, Khromova T, Globus T, Woolard D, Jensen J, Majewski A (2006) Terahertz-regime attenuation signatures in bacillus subtilis and a model based on surface polariton effects. IEEE Sens J 6:1076–1083

    Article  Google Scholar 

  6. Pickwell E, Wallace VP (2006) Biomedical applications of terahertz technology. J Phys D: Appl Phys 39:R301–R310

    Article  ADS  Google Scholar 

  7. Morita Y (2005) Terahertz technique for detection of microleaks in the seal of flexible plastic packages. Opt Eng 44:019001

    Article  ADS  Google Scholar 

  8. Walker GC, Bowen JW, Labaune J, Jackson J-B, Hadjiloucas S, Roberts J, Mourou G, Menu M (2012) Terahertz deconvolution. Opt Express 20:27230–27241

    Article  ADS  Google Scholar 

  9. Preu S, Döhler GH, Malzer S, Wang LJ, Gossard AC (2011) Tunable, continuous-wave Terahertz photomixer sources and applications. J Appl Phys 109:061301

    Article  ADS  Google Scholar 

  10. Martin D, Bowen J (1993) Long-wave optics. IEEE Trans Microw Theory Tech 41(10):1676–1690

    Article  ADS  Google Scholar 

  11. Berry CW, Jarrahi M (2012) Terahertz generation using plasmonic photoconductive gratings. New J Phys 14:105029

    Article  Google Scholar 

  12. Kajikawa K, Nagai Y, Uchiho Y, Ramakrishnan G, Kumar N, Ramanandan GKP, Planken PCM (2012) Terahertz emission from surface-immobilized gold nanospheres. Optics Lett 37:4053–4055

    Article  ADS  Google Scholar 

  13. Polyushkin DK, Hendry E, Stone EK, Barnes WL (2011) THz generation from plasmonic nanoparticle arrays. Nano Lett 11:4718–4724

    Article  ADS  Google Scholar 

  14. Welsh G, Hunt N, Wynne K (2007) Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating. Phys Rev Lett 98:026803

    Article  ADS  Google Scholar 

  15. Mitrofanov O, Lee M, Hsu J, Brener I, Harel R, Federici J, Wynn J, Pfeiffer L, West K (2001) Collection-mode near-field imaging with 0.5-THz pulses. IEEE J Sel Top Quantum Electron 7(4):600–607

    Article  Google Scholar 

  16. Kawano Y (2011) Highly sensitive detector for on-chip near-field thz imaging. IEEE J Sel Top Quantum Electron 17:67–78

    Article  Google Scholar 

  17. TeraSpike, AMO GmbH. Available at http://www.amo.de/thz_tip.0.html

  18. Seo MA, Adam AJL, Kang JH, Lee JW, Ahn KJ, Park QH, Planken PCM, Kim DS (2008) Near field imaging of terahertz focusing onto rectangular apertures. Opt Express 16:20484

    Article  Google Scholar 

  19. Adam AJL, Brok JM, Seo MA, Ahn KJ, Kim DS, Kang JH, Park QH, Nagel M, Planken PC (2008) Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures. Opt Express 16:7407

    Article  ADS  Google Scholar 

  20. Zhan H, Mendis R (2010) Mittleman DM, Superfocusing terahertz waves below lambda/250 using plasmonic parallel-plate waveguides. Opt Express 18:9643–9650

    Article  Google Scholar 

  21. Rusina A, Durach M, Nelson KA, Stockman MI (2008) Nanoconcentration of terahertz radiation in plasmonic waveguides. Opt Express 16:18576

    Article  ADS  Google Scholar 

  22. van der Valk NCJ, Planken PCM (2004) Towards terahertz near-field microscopy. Philos Trans Ser A Math Phys Eng Sci 362:315–319; discussion 319–321

    Article  ADS  Google Scholar 

  23. Planken PCM, van Rijmenam CEWM, Schouten RN (2005) Opto-electronic pulsed THz systems. Semicond Sci Technol 20:S121–S127

    Article  ADS  Google Scholar 

  24. Astley V, Zhan H, Mittleman D, Hao F, Nordlander P (2007) Plasmon-enhanced Terahertz near-field microscopy – OSA technical digest series (CD). In: Conference on lasers and electro-optics/quantum electronics and laser science conference and photonic applications systems technologies, Baltimore. Optical Society of America, p CTuJJ5

    Google Scholar 

  25. Huber AJ, Keilmann F, Wittborn J, Aizpurua J, Hillenbrand R (2008) Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett 8:3766–3770

    Article  ADS  Google Scholar 

  26. Ma Y, Huang M, Ryu S, Bark CW, Eom C-B, Irvin P, Levy J (2013) Broadband terahertz generation and detection at 10 nm scale. Nano Lett 13:2884–2888

    Article  ADS  Google Scholar 

  27. Park H-R, Ahn KJ, Han S, Bahk Y-M, Park N, Kim D-S (2013) Colossal absorption of molecules inside single terahertz nanoantennas. Nano Lett 13:1782–1786

    Google Scholar 

  28. Park H-R, Bahk Y-M, Choe JH, Han S, Choi SS, Ahn KJ, Park N, Park Q-H, Kim D-S (2011) Terahertz pinch harmonics enabled by single nano rods. Opt Express 19:24775–24781

    Article  ADS  Google Scholar 

  29. Park H-R, Bahk Y-M, Ahn KJ, Park Q-H, Kim D-S, Martín-Moreno L, García-Vidal FJ, Bravo-Abad J (2011) Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas. ACS Nano 5:8340–8345

    Article  Google Scholar 

  30. Woodward RM, Wallace VP, Pye RJ, Cole BE, Arnone DD, Linfield EH, Pepper M (2003) Terahertz pulse imaging of ex vivo basal cell carcinoma. J Investig Dermatol 120:72–78

    Article  Google Scholar 

  31. Ashworth P, O’Kelly P, Purushotham A, Pinder S, Kontos M, Pepper M, Wallace V (2008) An intra-operative THz probe for use during the surgical removal of breast tumors. In: 2008 33rd international conference on infrared, millimeter and terahertz waves, Pasadena

    Google Scholar 

  32. Son J-H (2013) Principle and applications of terahertz molecular imaging. Nanotechnology 24:214001

    Article  ADS  Google Scholar 

  33. Beard MC, Turner GM, Schmuttenmaer CA (2002) Terahertz spectroscopy. J Phys Chem B 106:7146–7159

    Article  Google Scholar 

  34. Joyce HJ, Docherty CJ, Gao Q, Tan HH, Jagadish C, Lloyd-Hughes J, Herz LM, Johnston MB (2013) Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy. Nanotechnology 24:214006

    Article  ADS  Google Scholar 

  35. Baxter JB, Schmuttenmaer CA (2006) Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J Phys Chem B 110:25229–25239

    Article  Google Scholar 

  36. Lloyd-Hughes J, Jeon T-I (2012) A review of the terahertz conductivity of bulk and nano-materials. J Infrared Millim Terahertz Waves 33:871–925

    Article  Google Scholar 

  37. Jung GB, Myung Y, Cho YJ, Sohn YJ, Jang DM, Kim HS, Lee C-W, Park J, Maeng I, Son J-H, Kang C (2010) Terahertz spectroscopy of nanocrystal-carbon nanotube and -graphene oxide hybrid nanostructures. J Phys Chem C 114:11258–11265

    Article  Google Scholar 

  38. Parkinson P, Joyce HJ, Gao Q, Tan HH, Zhang X, Zou J, Jagadish C, Herz LM, Johnston MB (2009) Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett 9:3349–3353

    Article  ADS  Google Scholar 

  39. Strait JH, George PA, Levendorf M, Blood-Forsythe M, Rana F, Park J (2009) Measurements of the carrier dynamics and terahertz response of oriented germanium nanowires using optical-pump terahertz-probe spectroscopy. Nano Lett 9:2967–2972

    Article  ADS  Google Scholar 

  40. Shur M (2010) Plasma wave terahertz electronics. Electron Lett 46:s18–s21

    Article  Google Scholar 

  41. Karasik BS, Sergeev AV, Prober DE (2011) Nanobolometers for THz photon detection. IEEE Trans Terahertz Sci Technol 1:97–111

    Article  Google Scholar 

  42. Vasić B, Gajić R (2012) Broadband and subwavelength terahertz modulators using tunable plasmonic crystals with semiconductor rods. J Phys D Appl Phys 45:095101

    Article  ADS  Google Scholar 

  43. Weis P, Garcia-Pomar JL, Höh M, Reinhard B, Brodyanski A, Rahm M (2012) Spectrally wide-band terahertz wave modulator based on optically tuned graphene. ACS Nano 6:9118–9124

    Article  Google Scholar 

  44. Ren L, Pint CL, Arikawa T, Takeya K, Kawayama I, Tonouchi M, Hauge RH, Kono J (2012) Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks. Nano Lett 12:787–790

    Article  ADS  Google Scholar 

  45. Cartwright AN (2011) Wavelength-independent optical polarizer based on metallic nanowire arrays. IEEE Photon J 3:1083–1092

    Article  Google Scholar 

  46. Jang K-H, Park SH, Lee K, Park G-S, Jeong YU (2012) High-order photonic bandgap reflex klystron using carbon nanotube multi-beam cathode. Electron Lett 48:707

    Article  Google Scholar 

  47. Otsuji T, Boubanga Tombet SA, Satou A, Fukidome H, Suemitsu M, Sano E, Popov V, Ryzhii M, Ryzhii V (2012) Graphene-based devices in terahertz science and technology. J Phys D Appl Phys 45:303001

    Article  Google Scholar 

  48. Neumann J, Gottschalk KE, Astumian RD (2012) Driving and controlling molecular surface rotors with a terahertz electric field. ACS Nano 6:5242–8

    Article  Google Scholar 

  49. Jornet JM, Akyildiz IF (2011) Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans Wirel Commun 10:3211–3221

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Bowen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bowen, J.W. (2015). Nanostructures in the Terahertz Range. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Structures for Optics and Photonics. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9133-5_17

Download citation

Publish with us

Policies and ethics