Skip to main content

Imaging of Tumour Metabolism: 18-FDG PET

  • Chapter
  • First Online:
Functional Imaging in Oncology
  • 1686 Accesses

Abstract

Positron emission tomography (PET) using 2-deoxy-2-[18F]fluoro-d-glucose (FDG) is one of the most important advances in oncologic imaging. FDG has provided researchers and clinicians with an insight into cancer biology by exploring glucose metabolism in vivo and in defining the patient’s tumour phenotype. Despite progress in radiopharmaceutical development and imaging technology exploring other molecular and cellular pathways, FDG remains the most widely used radiolabelled tracer for PET imaging worldwide. Molecular imaging with FDG PET is now an integral part of multidisciplinary cancer care. The use of FDG PET in determining appropriate treatments at initial diagnosis, during and following therapy, is a vital component in developing personalised medicine at various time points in a patient’s battle against cancer. In this chapter, we shall discuss briefly the background of FDG as a radiopharmaceutical and its applications in clinical oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-DG:

2-deoxy-d-glucose

BAT:

Brown adipose tissue

BMB:

Bone marrow biopsy

CI:

Conventional imaging

CRC:

Colorectal cancer

CRT:

Chemoradiation

CWU:

Conventional work-up

DTC:

Differentiated thyroid cancer

EBUS-TBNA:

Endobronchial ultrasound guided transbronchial needle aspiration

EGFR:

Epidermal growth factor receptor

EUS:

Endoscopic ultrasound

F-18:

Fluorine-18

FDG:

Fluoro-d-glucose

GLUT:

Glucose transport proteins

HCC:

Hepatocellular carcinoma

HD:

Hodgkin’s disease

HNSCC:

Head and neck squamous cell cancers

LABC:

Locally advanced breast cancer

LARC:

Locally advanced rectal cancer

MTV:

Metabolic tumour volume

NHL:

Non-Hodgkin’s lymphoma

NPV:

Negative predictive value

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

PFS:

Progression-free survival

RCT:

Randomised controlled trial

RT:

Radiotherapy

SPN:

Solitary pulmonary nodule

SUV:

Standardized uptake value

TLG:

Total lesion glycolysis

TOF:

Time-of-flight

TRG:

Tumor regression grade

VEGF:

Vascular endothelial growth factor

References

  1. Bessell E, et al. The use of deoxyfluoro-D-glucopyranoses and related compounds in a study of yeast hexokinase specificity. Biochem J. 1972;128(2):199–204.

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Gallagher BM, et al. Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J Nucl Med. 1977;18(10):990–6.

    PubMed  CAS  Google Scholar 

  3. Som P, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med. 1980;21(7):670–5.

    PubMed  CAS  Google Scholar 

  4. Fowler JS. Design and synthesis of 2-deoxy-2-[18F]fluoro-D-glucose (18FDG). In: Welch M, Redvanly C, editors. Handbook of radiopharmaceuticals, radiochemistry and applications. Chichester: Wiley; 2003. p. 307–21.

    Google Scholar 

  5. Kuhl DE, et al. The Mark IV system for radionuclide computed tomography of the brain. Radiology. 1976;121(2):405–13.

    PubMed  CAS  Google Scholar 

  6. Snyder SE, Kilbourn MR. Chemistry of fluorine-18 radiopharmaceuticals. In: Handbook of radiopharmaceuticals. Chichester: Wiley; 2003. p.195–227.

    Google Scholar 

  7. Tucker R, et al. Impact of fluorine-18 fluorodeoxyglucose positron emission tomography on patient management: first year’s experience in a clinical center. J Clin Oncol. 2001;19(9):2504–8.

    PubMed  CAS  Google Scholar 

  8. Sols A, Crane RK. Substrate specificity of brain hexokinase. J Biol Chem. 1954;210(2):581–95.

    PubMed  CAS  Google Scholar 

  9. Sokoloff L. Mapping of local cerebral functional activity by measurement of local cerebral glucose utilization with [14C]deoxyglucose. Brain. 1979;102(4):653–68.

    Article  PubMed  CAS  Google Scholar 

  10. Ido T, et al. Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Label Compd Radiopharm. 1978;14(2):175–83.

    Article  CAS  Google Scholar 

  11. VonSchulthess GK, et al. Clinical positron emission tomography/magnetic resonance imaging applications. Semin Nucl Med. 2013;43(1):3–10.

    Google Scholar 

  12. Ruth T, Wolf A. Absolute cross section for the production of 18F via the 18O(p, n)18F reaction. Radiochim Acta. 1979;26(21):21–4.

    CAS  Google Scholar 

  13. International Atomic Energy Agency. Cyclotron produced radionuclides: guidance on facility design and production of [18F] flurodeoxyglucose (FDG). In: IAEA radioisotopes and radiopharmaceuticals ed. Vienna: International Atomic Energy Agency; 2012.

    Google Scholar 

  14. Gallagher BM, et al. Metabolic trapping as a principle of radiopharmaceutical design: some factors resposible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med. 1978;19(10):1154–61.

    PubMed  CAS  Google Scholar 

  15. Silverman M, et al. Specificity of monosaccharide transport in dog kidney. Am J Physiol. 1970;218(3):743–50.

    PubMed  CAS  Google Scholar 

  16. Plathow C, Weber WA. Tumor cell metabolism imaging. J Nucl Med. 2008;49 Suppl 2:43S–63.

    Article  PubMed  CAS  Google Scholar 

  17. Warburg O, et al. The metabolism of tumours in the body. J Gen Physiol. 1927;8(6):519–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Haberkorn U, et al. FDG uptake, tumor proliferation and expression of glycolysis associated genes in animal tumor models. Nucl Med Biol. 1994;21(6):827–34.

    Article  PubMed  CAS  Google Scholar 

  19. Pauwels EK, et al. FDG accumulation and tumor biology. Nucl Med Biol. 1998;25(4):317–22.

    Article  PubMed  CAS  Google Scholar 

  20. Cook GJ, et al. Normal physiological and benign pathological variants of 18-fluoro-2-deoxyglucose positron-emission tomography scanning: potential for error in interpretation. Semin Nucl Med. 1996;26(4):308–14.

    Article  PubMed  CAS  Google Scholar 

  21. Kitajima K, et al. Normal uptake of 18F-FDG in the testis: an assessment by PET/CT. Ann Nucl Med. 2007;21(7):405–10.

    Article  PubMed  Google Scholar 

  22. Shammas A, et al. Pediatric FDG PET/CT: Physiologic uptake, normal variants, and benign conditions. Radiographics. 2009;29(5):1467–86.

    Google Scholar 

  23. Chander S, et al. Physiologic uterine uptake of FDG during menstruation demonstrated with serial combined Positron Emission Tomography and Computed Tomography. Clin Nucl Med. 2002;27(1):22–4.

    Article  PubMed  Google Scholar 

  24. Kim S, et al. Temporal relation between temperature change and FDG uptake in brown adipose tissue. Eur J Nucl Med Mol Imaging. 2008;35:984–9.

    Google Scholar 

  25. Fukuchi K, et al. Benign variations and incidental abnormalities of myocardial FDG uptake in the fasting state as encountered during routine oncology positron emission tomography studies. Br J Radiol. 2007;80:3–11.

    Article  PubMed  CAS  Google Scholar 

  26. Gontier E, et al. High and typical 18F-FDG bowel uptake in patients treated with metformin. Eur J Nucl Med Mol Imaging. 2008;35(1):95–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ă–zĂ¼lker T, et al. Clearance of the high intestinal 18F-FDG uptake associated with metformin after stopping the drug. Eur J Nucl Med Mol Imaging. 2010;37(5):1011–7.

    Article  PubMed  Google Scholar 

  28. Oh J-R, et al. Impact of medication discontinuation on increased intestinal FDG accumulation in diabetic patients treated with metformin. Am J Roentgenol. 2010;195(6):1404–10.

    Google Scholar 

  29. Zhuang H, et al. Applications of fluorodeoxyglucose-PET imaging in the detection of infection and inflammation and other benign disorders. Radiol Clin North Am. 2005;43(1):121–34.

    Article  PubMed  Google Scholar 

  30. Shon IH, Fogelman I. F-18 FDG positron emission tomography and benign fractures. Clin Nucl Med. 2003;28(3):171–5.

    PubMed  Google Scholar 

  31. de Langen AJ, et al. Repeatability of 18F-FDG uptake measurements in tumors: a metaanalysis. J Nucl Med. 2012;53(5):701–8.

    Article  PubMed  Google Scholar 

  32. Boellaard R. Need for standardization of 18F-FDG PET/CT for treatment response assessments. J Nucl Med. 2011;52:93S–100.

    Article  PubMed  Google Scholar 

  33. Huang SC. Anatomy of SUV. Standardized uptake value. Nucl Med Biol. 2000;27(7):643–6.

    Article  PubMed  CAS  Google Scholar 

  34. Weiss GJ, Korn RL. Interpretation of PET Scans: do not take SUVs at face value. J Thorac Oncol. 2012;7(12):1744–6.

    Article  PubMed  Google Scholar 

  35. de Wiele C, et al. Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours. Eur J Nucl Med Mol Imaging. 2013;40(2):290–301.

    Google Scholar 

  36. Zhang H, et al. Independent prognostic value of whole-body metabolic tumor burden from FDG-PET in non-small cell lung cancer. Int J Comput Assist Radiol Surg. 2013;8(2):181–91.

    Google Scholar 

  37. MacMahon H, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology. 2005;237(2):395–400.

    Article  PubMed  Google Scholar 

  38. Grgic A, et al. Risk stratification of solitary pulmonary nodules by means of PET using 18F-fluorodeoxyglucose and SUV quantification. Eur J Nucl Med Mol Imaging. 2010;37:1087–94.

    Article  PubMed  Google Scholar 

  39. Fletcher JW, et al. A comparison of the diagnostic accuracy of 18F-FDG PET and CT in the characterization of solitary pulmonary nodules. J Nucl Med. 2008;49(2):179–85.

    Article  PubMed  Google Scholar 

  40. Hashimoto Y, et al. Accuracy of PET for diagnosis of solid pulmonary lesions with 18F-FDG uptake below the standardized uptake value of 2.5. J Nucl Med. 2006;47(3):426–31.

    PubMed  Google Scholar 

  41. Fisher RE, Fletcher JW. PET for the evaluation of solitary pulmonary nodules/REPLY. J Nucl Med. 2009;50(2):326–7.

    Article  PubMed  Google Scholar 

  42. Di Chiro G, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology. 1982;32(12):1323–9.

    Article  PubMed  Google Scholar 

  43. Lin M, et al. Neurosyphilitic gumma on F18-2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography: an old disease investigated with a new technology. J Clin Neurosci. 2009;16(3):410–2.

    Article  PubMed  CAS  Google Scholar 

  44. Chen W. Clinical applications of PET in brain tumors. J Nucl Med. 2007;48:1468–81.

    Article  PubMed  Google Scholar 

  45. Vikram R, et al. Utility of PET/CT in differentiating benign from malignant adrenal nodules in patients with cancer. Am J Roentgenol. 2008;191(5):1545–51.

    Article  Google Scholar 

  46. Metser U, et al. 18F-FDG PET/CT in the evaluation of adrenal masses. J Nucl Med. 2006;47(1):32–7.

    PubMed  Google Scholar 

  47. Jana S, et al. FDG-PET and CT characterization of adrenal lesions in cancer patients. Eur J Nucl Med Mol Imaging. 2006;33(1):29–35.

    Article  PubMed  Google Scholar 

  48. Tessonnier L, et al. Does 18F-FDG PET/CT add diagnostic accuracy in incidentally identified non-secreting adrenal tumours? Eur J Nucl Med Mol Imaging. 2008;35(11):2018–25.

    Article  PubMed  CAS  Google Scholar 

  49. Ansquer C, et al. 18F-FDG PET/CT in the characterization and surgical decision concerning adrenal masses: a prospective multicentre evaluation. Eur J Nucl Med Mol Imaging. 2010;37(9):1669–78.

    Article  PubMed  Google Scholar 

  50. Khan MA, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol. 2000;32(5):792–7.

    Google Scholar 

  51. Ho C-L, et al. (11)C-Acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med. 2003;44(2):213–21.

    PubMed  Google Scholar 

  52. Wu Y, et al. Diagnostic value of fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography for the detection of metastases in non–small-cell lung cancer patients. Int J Cancer. 2013;132(2):E37–47.

    Google Scholar 

  53. Søgaard R, et al. Preoperative staging of lung cancer with PET/CT: cost-effectiveness evaluation alongside a randomized controlled trial. Eur J Nucl Med Mol Imaging. 2011;38(5):802–9.

    Article  PubMed  Google Scholar 

  54. Silvestri GA, et al. Noninvasive staging of non-small cell lung cancer. ACCP evidenced-based clinical practice guidelines (2nd edition). Chest. 2007;132(3 Suppl):178S–201.

    Google Scholar 

  55. CrinĂ² L, et al. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21 Suppl 5:v103–15.

    Google Scholar 

  56. Working party of the Australian Cancer Network, The Cancer Council Australia, and Clinical Oncological Society of Australia. Clinical practice guidelines for the prevention, diagnosis and management of lung cancer. The Cancer Council Australia and Australian Cancer Network, Sydney. 2004.

    Google Scholar 

  57. van Tinteren H, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet. 2002;359(9315):1388–92.

    Article  PubMed  Google Scholar 

  58. Fischer B, et al. Preoperative staging of lung cancer with combined PET-CT. N Engl J Med. 2009;361(1):32–9.

    Article  PubMed  CAS  Google Scholar 

  59. Fischer BM, et al. Multimodality approach to mediastinal staging in non-small cell lung cancer. Faults and benefits of PET-CT: a randomised trial. Thorax. 2011;66(4):294–300.

    Article  PubMed  Google Scholar 

  60. Mac Manus MP, Hicks RJ. The role of Positron Emission Tomography/Computed Tomography in Radiation Therapy Planning for patients with lung cancer. Semin Nucl Med. 2012;42(5):308–19.

    Google Scholar 

  61. Schiepers C, et al. PET for staging of Hodgkin’s disease and non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging. 2003;30(1):S82–8.

    Google Scholar 

  62. Scott A, et al. Positron emission tomography changes management, improves prognostic stratification and is superior to gallium scintigraphy in patients with low-grade lymphoma: results of a multicentre prospective study. Eur J Nucl Med Mol Imaging. 2009;36(3):347–53.

    Google Scholar 

  63. Pakos EE, et al. 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis. J Nucl Med. 2005;46(6):958–63.

    PubMed  Google Scholar 

  64. Schaefer N, et al. Bone involvement in patients with lymphoma: the role of FDG-PET/CT. Eur J Nucl Med Mol Imaging. 2007;34(1):60–7.

    Google Scholar 

  65. Cheson BD. Hodgkin lymphoma: protecting the victims of our success. J Clin Oncol. 2012;30(36):4456–7.

    Google Scholar 

  66. El-Galaly TC, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography–staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol. 2012;30:4508–14.

    Google Scholar 

  67. Moulin-Romsee G, et al. 18F-FDG PET/CT bone/bone marrow findings in Hodgkin’s lymphoma may circumvent the use of bone marrow trephine biopsy at diagnosis staging. Eur J Nucl Med Mol Imaging. 2010;37(6):1095–105.

    Google Scholar 

  68. Richardson SE, et al. Routine bone marrow biopsy is not necessary in the staging of patients with classical Hodgkin lymphoma in the 18F-fluoro-2-deoxyglucose positron emission tomography era. Leuk Lymphoma. 2012;53(3):381–5.

    Google Scholar 

  69. Schöder H, et al. Intensity of 18Fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23(21):4643–51.

    Article  PubMed  Google Scholar 

  70. Tang B, et al. Correlating metabolic activity with cellular proliferation in follicular lymphomas. Mol Imaging Biol. 2009;11(5):296–302.

    Article  PubMed  Google Scholar 

  71. van Vliet EPM, et al. Staging investigations for oesophageal cancer: a meta-analysis. Br J Cancer. 2008;98(3):547–57.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chatterton BE, et al. Positron emission tomography changes management and prognostic stratification in patients with oesophageal cancer: results of a multicentre prospective study. Eur J Nucl Med Mol Imaging. 2009;36(3):354–61.

    Google Scholar 

  73. Lutz MP, et al. Highlights of the EORTC St. Gallen International Expert Consensus on the primary therapy of gastric, gastroesophageal and oesophageal cancer – differential treatment strategies for subtypes of early gastroesophageal cancer. Eur J Cancer. 2012;48(16):2941–53.

    Google Scholar 

  74. Kim S-K, et al. Assessment of lymph node metastases using 18F-FDG PET in patients with advanced gastric cancer. Eur J Nucl Med Mol Imaging. 2006;33(2):148–55.

    Google Scholar 

  75. Karikios DJ, et al. The role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18FDG PET-CT) in the preoperative staging of gastric cancer: A retrospective review at a single institution. [Abstract]. Asia–Pac J Clin Oncol 2011; 7(Suppl. 4):118.

    Google Scholar 

  76. Coupe N, et al. Staging FDG PET predicts survival in gastric cancer and its potential impact on management decisions. Asia-Pac J Clin Oncol 2012; 8(Suppl. 2):49.

    Google Scholar 

  77. Schmoll HJ, et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann Oncol. 2012;23(10):2479–516.

    Google Scholar 

  78. Park IJ, et al. Efficacy of PET/CT in the accurate evaluation of primary colorectal carcinoma. Eur J Surg Oncol. 2006;32(9):941–7.

    Article  PubMed  CAS  Google Scholar 

  79. Llamas-Elvira J, et al. Fluorine-18 fluorodeoxyglucose PET in the preoperative staging of colorectal cancer. Eur J Nucl Med Mol Imaging. 2007;34(6):859–67.

    Google Scholar 

  80. Fuster D, et al. Preoperative staging of large primary breast cancer with [18F]fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J Clin Oncol. 2008;26(29):4746–51.

    Article  PubMed  Google Scholar 

  81. Groheux D, et al. 18F-FDG PET/CT in staging patients with locally advanced or inflammatory breast cancer: comparison to conventional staging. J Nucl Med. 2013;54(1):5–11.

    Google Scholar 

  82. Pritchard KI, et al. Prospective study of 2- [18F]fluoro-deoxyglucose positron emission tomography in the assessment of regional nodal spread of disease in patients with breast cancer: an Ontario Clinical Oncology Group study. J Clin Oncol. 2012;30(12):1274–9.

    Google Scholar 

  83. Powles T, et al. Molecular positron emission tomography and PET/CT imaging in urological malignancies. Eur Urol. 2007;51(6):1511–21.

    Google Scholar 

  84. Eisenhauer EA, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Google Scholar 

  85. Wahl RL, et al. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Wahl RL, et al. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol. 1993;11(11):2101–11.

    PubMed  CAS  Google Scholar 

  87. Melton G, et al. Efficacy of preoperative combined 18-fluorodeoxyglucose positron emission tomography and computed tomography for assessing primary rectal cancer response to neoadjuvant therapy. J Gastrointest Surg. 2007;11(8):961–9.

    Article  PubMed  Google Scholar 

  88. Guerra L, et al. Change in glucose metabolism measured by 18F-FDG PET/CT as a predictor of histopathologic response to neoadjuvant treatment in rectal cancer. Abdom Imaging. 2011;36(1):38–45.

    Article  PubMed  Google Scholar 

  89. Janssen MHM, et al. Accurate prediction of pathological rectal tumor response after two weeks of preoperative radiochemotherapy using 18F-fluorodeoxyglucose-positron emission tomography-computed tomography imaging. Int J Radiat Oncol Biol Phys. 2010;77(2):392–9.

    Article  PubMed  Google Scholar 

  90. Capirci C, et al. Long-term prognostic value of 18F-FDG PET in patients with locally advanced rectal cancer previously treated with neoadjuvant radiochemotherapy. Am J Roentgenol. 2006;187(2):W202–8.

    Google Scholar 

  91. Kalff V, et al. Findings on 18F-FDG PET scans after neoadjuvant chemoradiation provides prognostic stratification in patients with locally advanced rectal carcinoma subsequently treated by radical surgery. J Nucl Med. 2006;47(1):14–22.

    PubMed  Google Scholar 

  92. Lordick F, et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol. 2007;8(9):797–805.

    Google Scholar 

  93. zum BĂ¼schenfelde CM, et al. 18F-FDG PET-guided salvage neoadjuvant radiochemotherapy of adenocarcinoma of the esophagogastric junction: the MUNICON II trial. J Nucl Med. 2011;52(8):1189–96.

    Article  PubMed  Google Scholar 

  94. Stroobants S, et al. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer. 2003;39(14):2012–20.

    Google Scholar 

  95. Benz MR, et al. 18F-FDG PET/CT for monitoring treatment responses to the epidermal growth factor receptor inhibitor Erlotinib. J Nucl Med. 2011;52(11):1684–9.

    Article  PubMed  CAS  Google Scholar 

  96. McArthur GA, et al. Marked, homogeneous, and early [18F]fluorodeoxyglucose–positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol. 2012;30(14):1628–34.

    Google Scholar 

  97. Lin M, et al. Treatment response in liver metastases following 90Y SIR-spheres: an evaluation with PET. Hepatogastroenterology. 2007;54:910–2.

    PubMed  CAS  Google Scholar 

  98. Travaini L, et al. Role of [18F]FDG-PET/CT after radiofrequency ablation of liver metastases: preliminary results. Eur J Nucl Med Mol Imaging. 2008;35(7):1316–22.

    Article  PubMed  Google Scholar 

  99. Juweid ME, et al. Use of positron emission tomography for response assessment of lymphoma: Consensus of the Imaging Subcommittee of International Harmonization Project in lymphoma. J Clin Oncol. 2007;25(5):571–8.

    Google Scholar 

  100. Terasawa T, et al. 18F-FDG PET for posttherapy assessment of Hodgkin’s disease and aggressive non-Hodgkin’s lymphoma: a systematic review. J Nucl Med. 2008;49(1):13–21.

    Article  PubMed  Google Scholar 

  101. Zijlstra J, et al. 18F-Fluoro-deoxyglucose positron emission tomography for post-treatment evaluation of malignant lymphoma: a systematic review. Haematologica. 2006;91:522–9.

    PubMed  Google Scholar 

  102. Kobe C, et al. Positron emission tomography has a high negative predictive value for progression or early relapse for patients with residual disease after first-line chemotherapy in advanced-stage Hodgkin lymphoma. Blood. 2008;112(10):3989–94.

    Google Scholar 

  103. Mikhaeel NG, et al. FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann Oncol. 2005;16(9):1514–23.

    Google Scholar 

  104. Spaepen K, et al. Early restaging positron emission tomography with 18F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin’s lymphoma. Ann Oncol. 2002;13(9):1356–63.

    Google Scholar 

  105. Gallamini A, et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a Joint Italian-Danish study. J Clin Oncol. 2007;25(24):3746–52.

    Google Scholar 

  106. Zinzani PL, et al. Midtreatment 18F-fluorode-oxyglucose positron-emission tomography in aggressive non-Hodgkin lymphoma. Cancer. 2011;117(5):1010–8.

    Google Scholar 

  107. Barrington S, et al. Concordance between four European centres of PET reporting criteria designed for use in multicentre trials in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2010;37(10):1824–33.

    Google Scholar 

  108. Meignan M, et al. Report on the third international workshop on interim positron emission tomography in lymphoma held in Menton, France, 26–27 September 2011 and Menton 2011 Consensus. Leuk Lymphoma. 2012;53(10):1876–81.

    Google Scholar 

  109. Aridgides P, et al. PET response-guided treatment of Hodgkin’s lymphoma: a review of the evidence and active clinical trials. Adv Hematol. 2011.

    Google Scholar 

  110. Hutchings M, Barrington SF. PET/CT for therapy response assessment in lymphoma. J Nucl Med. 2009;50 Suppl 1:21S–30.

    Article  PubMed  CAS  Google Scholar 

  111. Huebner RH, et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med. 2000;41(7):1177–89.

    PubMed  CAS  Google Scholar 

  112. Scott AM, et al. PET changes management and improves prognostic stratification in patients with recurrent colorectal cancer: results of a multicenter prospective study. J Nucl Med. 2008;49(9):1451–7.

    Google Scholar 

  113. Kalff V, et al. The clinical impact of 18F-FDG PET in patients with suspected or confirmed recurrence of colorectal cancer: a prospective study. J Nucl Med. 2002;43(4):492–9.

    PubMed  Google Scholar 

  114. Deleau C, et al. Clinical impact of fluorodeoxyglucose-positron emission tomography scan/computed tomography in comparison with computed tomography on the detection of colorectal cancer recurrence. Eur J Gastroenterol Hepatol. 2011;23:275–81.

    Article  PubMed  Google Scholar 

  115. Lin M, et al. Positron emission tomography and colorectal cancer. Crit Rev Oncol Hematol. 2011;77(1):30–47.

    Google Scholar 

  116. Pawlik T, et al. Trends in nontherapeutic laparotomy rates in patients undergoing surgical therapy for hepatic colorectal metastases. Ann Surg Oncol. 2009;16(2):371–8.

    Article  PubMed  Google Scholar 

  117. Ruers TJM, et al. Improved selection of patients for hepatic surgery of colorectal liver metastases with 18F-FDG PET: a randomized study. J Nucl Med. 2009;50(7):1036–41.

    Article  PubMed  Google Scholar 

  118. Fernandez FG, et al. Five-year survival after resection of hepatic metastases from colorectal cancer in patients screened by positron emission tomography with F-18 fluorodeoxyglucose (FDG-PET). Ann Surg. 2004;240:438–47.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Metser U, et al. Assessment of tumor recurrence in patients with colorectal cancer and elevated carcinoembryonic antigen level: FDG PET/CT versus contrast-enhanced 64-MDCT of the chest and abdomen. Am J Roentgenol. 2010;194(3):766–71.

    Google Scholar 

  120. Pallardy A, et al. Clinical and survival impact of FDG PET in patients with suspicion of recurrent cervical carcinoma. Eur J Nucl Med Mol Imaging. 2010;37(7):1270–8.

    Google Scholar 

  121. Fulham MJ, et al. The impact of PET-CT in suspected recurrent ovarian cancer: a prospective multi-centre study as part of the Australian PET Data Collection Project. Gynecol Oncol. 2009;114(3):462–8.

    Google Scholar 

  122. Isles MG, et al. A systematic review and meta-analysis of the role of positron emission tomography in the follow up of head and neck squamous cell carcinoma following radiotherapy or chemoradiotherapy. Clin Otolaryngol. 2008;33(3):210–22.

    Google Scholar 

  123. Porceddu SV, et al. Results of a prospective study of positron emission tomography–directed management of residual nodal abnormalities in node-positive head and neck cancer after definitive radiotherapy with or without systemic therapy. Head Neck. 2011;33(12):1675–82.

    Google Scholar 

  124. Abgral R, et al. Does 18F-FDG PET/CT improve the detection of posttreatment recurrence of head and neck squamous cell carcinoma in patients negative for disease on clinical follow-up? J Nucl Med. 2009;50(1):24–9.

    Article  PubMed  Google Scholar 

  125. Cooper DS, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19(11):1167–214.

    Article  PubMed  Google Scholar 

  126. Dong M-J, et al. Value of 18F-FDG-PET/PET-CT in differentiated thyroid carcinoma with radioiodine-negative whole-body scan: a meta-analysis. Nucl Med Commun. 2009;30(8):639–50.

    Article  PubMed  Google Scholar 

  127. Wang W, et al. Resistance of [18F]-Fluorode-oxyglucose-avid metastatic thyroid cancer lesions to treatment with high-dose radioactive iodine. Thyroid. 2001;11(12):1169–75.

    Article  PubMed  CAS  Google Scholar 

  128. Metser U, Even-Sapir E. Increased 18F-fluorode-oxyglucose uptake in benign, nonphysiologic lesions found on whole-body positron emission tomography/computed tomography (PET/CT): accumulated data from four years of experience with PET/CT. Semin Nucl Med. 2007;37(3):206–22.

    Google Scholar 

  129. Even-Sapir E, et al. The presentation of malignant tumours and pre-malignant lesions incidentally found on PET-CT. Eur J Nucl Med Mol Imaging. 2006;33(5):541–52.

    Article  PubMed  Google Scholar 

  130. Lin M, et al. Management of patients following detection of unsuspected colon lesions by PET imaging. Clin Gastroenterol Hepatol. 2011;9:1025–32.

    Article  PubMed  Google Scholar 

  131. Katz SC, Shaha AR. PET-associated incidental neoplasms of the thyroid. J Am Coll Surg. 2008;207:259–64.

    Article  PubMed  Google Scholar 

  132. Wong C, et al. The clinical significance and management of incidental focal FDG uptake in the thyroid gland on positron emission tomography/computed tomography (PET/CT) in patients with non-thyroidal malignancy. Acta Radiol. 2011;52:899–904.

    Google Scholar 

  133. Bogsrud TV, et al. The value of quantifying 18F-FDG uptake in thyroid nodules found incidentally on whole-body PET–CT. Nucl Med Commun. 2007;28(5):373–81.

    Article  PubMed  Google Scholar 

  134. Lin M, Ambati C. The management impact of clinically significant incidental lesions detected on staging FDG PET-CT in patients with non-small cell lung cancer (NSCLC): an analysis of 649 cases. Lung Cancer. 2012;76(3):344–9.

    Google Scholar 

  135. Minamimoto R, et al. The current status of an FDG-PET cancer screening program in Japan, based on a 4-year (2006–2009) nationwide survey. Ann Nucl Med. 2013;27(1):46–57.

    Google Scholar 

  136. Hillman BJ. Screening for cancer with high technology imaging tests. J Clin Oncol. 2009;27(11):1740–1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lin, M., Kumar, D. (2014). Imaging of Tumour Metabolism: 18-FDG PET. In: Luna, A., Vilanova, J., Hygino da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40412-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40412-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40411-5

  • Online ISBN: 978-3-642-40412-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics